[bookmark: _GoBack]STORED OBJECT

Compound Statements	3
BEGIN ... END Compound Statement	3
Statement Labels	3
DECLARE Statement	4
Variables in Stored Programs	4
Local Variable DECLARE Statement	5
Local Variable Scope and Resolution	5
Flow Control Statements	6
CASE Statement	6
IF Statement	7
ITERATE Statement	8
13.6.5.4 LEAVE Statement	8
LOOP Statement	8
REPEAT Statement	8
RETURN Statement	9
WHILE Statement	9
Condition Handling	10
DECLARE ... CONDITION Statement	10
DECLARE ... HANDLER Statement	11
GET DIAGNOSTICS Statement	14
RESIGNAL Statement	17
RESIGNAL Overview	17
RESIGNAL with New Signal Information	18
RESIGNAL with a Condition Value and Optional New Signal Information	19
RESIGNAL Requires Condition Handler Context	20
SIGNAL Statement	20
SIGNAL Overview	21
Signal Condition Information Items	23
Effect of Signals on Handlers, Cursors, and Statements	24
Scope Rules for Handlers	24
The MySQL Diagnostics Area	27
Diagnostics Area Structure	27
Diagnostics Area Information Items	27
How the Diagnostics Area is Cleared and Populated	28
Diagnostics Area-Related System Variables	29
Condition Handling and OUT or INOUT Parameters	30
Restrictions on Condition Handling	30
Stored Objects	31
Defining Stored Programs	31
Using Stored Routines	32
25.2.1 Stored Routine Syntax	33
Stored Routines and MySQL Privileges	33
25.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()	34
Using Triggers	34
Trigger Syntax and Examples	34
Using the Event Scheduler	38
Event Scheduler Overview	38
Event Scheduler Configuration	39
Event Syntax	41
Event Metadata	41
Event Scheduler Status	41
The Event Scheduler and MySQL Privileges	42
Using Views	44
View Syntax	44
View Processing Algorithms	45
Updatable and Insertable Views	46
The View WITH CHECK OPTION Clause	48
Stored Object Access Control	48
The DEFINER Attribute	49
The SQL SECURITY Characteristic	49
Examples	49
Orphan Stored Objects	50
Risk-Minimization Guidelines	51
Stored Program Binary Logging	52
Restrictions on Stored Programs	57
SQL Statements Not Permitted in Stored Routines	57
Restrictions for Stored Functions	58
Restrictions for Triggers	58
Name Conflicts within Stored Routines	58
Replication Considerations	59
Debugging Considerations	59
Unsupported Syntax from the SQL:2003 Standard	59
Stored Routine Concurrency Considerations	59
Event Scheduler Restrictions	59
Stored routines and triggers in NDB Cluster	60
Restrictions on Views	60

[bookmark: _Toc57736881]Compound Statements
[bookmark: idm46148690935360][bookmark: idm46148690934288][bookmark: idm46148690932800][bookmark: idm46148690931728]This section describes the syntax for the BEGIN ... END compound statement and other statements that can be used in the body of stored programs: Stored procedures and functions, triggers, and events. These objects are defined in terms of SQL code that is stored on the server for later invocation.
A compound statement is a block that can contain other blocks; declarations for variables, condition handlers, and cursors; and flow control constructs such as loops and conditional tests.
[bookmark: _Toc57736882]BEGIN ... END Compound Statement
[bookmark: idm46148690924896][bookmark: idm46148690923856][begin_label:] BEGIN
 [statement_list]
END [end_label]
BEGIN ... END syntax is used for writing compound statements, which can appear within stored programs (stored procedures and functions, triggers, and events). A compound statement can contain multiple statements, enclosed by the BEGIN and END keywords. statement_list represents a list of one or more statements, each terminated by a semicolon (;) statement delimiter. The statement_list itself is optional, so the empty compound statement (BEGIN END) is legal.
BEGIN ... END blocks can be nested.
Use of multiple statements requires that a client is able to send statement strings containing the ; statement delimiter. In the mysql command-line client, this is handled with the delimiter command. Changing the ; end-of-statement delimiter (for example, to //) permit ; to be used in a program body. For an example, see Section 20.1, “Defining Stored Programs”.
A BEGIN ... END block can be labeled. See Section 13.6.2, “Statement Labels”.
The optional [NOT] ATOMIC clause is not supported. This means that no transactional savepoint is set at the start of the instruction block and the BEGIN clause used in this context has no effect on the current transaction.
Note
Within all stored programs, the parser treats BEGIN [WORK] as the beginning of a BEGIN ... END block. To begin a transaction in this context, use START TRANSACTION instead.

[bookmark: _Toc57736883]Statement Labels
[bookmark: idm46148690893728][bookmark: idm46148690892240][bookmark: idm46148690890752][bookmark: idm46148690889264][bookmark: idm46148690887776][begin_label:] BEGIN
 [statement_list]
END [end_label]

[begin_label:] LOOP
 statement_list
END LOOP [end_label]

[begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]

[begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]
Labels are permitted for BEGIN ... END blocks and for the LOOP, REPEAT, and WHILE statements. Label use for those statements follows these rules:
· begin_label must be followed by a colon.
· begin_label can be given without end_label. If end_label is present, it must be the same as begin_label.
· end_label cannot be given without begin_label.
· Labels at the same nesting level must be distinct.
· Labels can be up to 16 characters long.
To refer to a label within the labeled construct, use an ITERATE or LEAVE statement. The following example uses those statements to continue iterating or terminate the loop:
CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN ITERATE label1; END IF;
 LEAVE label1;
 END LOOP label1;
END;
The scope of a block label does not include the code for handlers declared within the block. For details, see Section 13.6.7.2, “DECLARE ... HANDLER Statement”.

[bookmark: _Toc57736884]DECLARE Statement
[bookmark: idm46148690856288]The DECLARE statement is used to define various items local to a program:
· Local variables.
· Conditions and handlers.
· Cursors.
DECLARE is permitted only inside a BEGIN ... END compound statement and must be at its start, before any other statements.
Declarations must follow a certain order. Cursor declarations must appear before handler declarations. Variable and condition declarations must appear before cursor or handler declarations.
[bookmark: _Toc57736885]Variables in Stored Programs
System variables and user-defined variables can be used in stored programs, just as they can be used outside stored-program context. In addition, stored programs can use DECLARE to define local variables, and stored routines (procedures and functions) can be declared to take parameters that communicate values between the routine and its caller.
· To declare local variables, use the DECLARE statement, as described in Section 13.6.4.1, “Local Variable DECLARE Statement”.
· Variables can be set directly with the SET statement. See Section 13.7.4.1, “SET Syntax for Variable Assignment”.
· Results from queries can be retrieved into local variables using SELECT ... INTO var_list or by opening a cursor and using FETCH ... INTO var_list. See Section 13.2.9.1, “SELECT ... INTO Statement”, and Section 13.6.6, “Cursors”.
For information about the scope of local variables and how MySQL resolves ambiguous names, see Section 13.6.4.2, “Local Variable Scope and Resolution”.
It is not permitted to assign the value DEFAULT to stored procedure or function parameters or stored program local variables (for example with a SET var_name = DEFAULT statement). As of MySQL 5.6.6, this results in a syntax error.
[bookmark: _Toc57736886]Local Variable DECLARE Statement
DECLARE var_name [, var_name] ... type [DEFAULT value]
This statement declares local variables within stored programs. To provide a default value for a variable, include a DEFAULT clause. The value can be specified as an expression; it need not be a constant. If the DEFAULT clause is missing, the initial value is NULL.
Local variables are treated like stored routine parameters with respect to data type and overflow checking.
Variable declarations must appear before cursor or handler declarations.
Local variable names are not case-sensitive. Permissible characters and quoting rules are the same as for other identifiers.
The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can be referred to in blocks nested within the declaring block, except those blocks that declare a variable with the same name.
[bookmark: _Toc57736887]Local Variable Scope and Resolution
The scope of a local variable is the BEGIN ... END block within which it is declared. The variable can be referred to in blocks nested within the declaring block, except those blocks that declare a variable with the same name.
Because local variables are in scope only during stored program execution, references to them are not permitted in prepared statements created within a stored program. Prepared statement scope is the current session, not the stored program, so the statement could be executed after the program ends, at which point the variables would no longer be in scope. For example, SELECT ... INTO local_var cannot be used as a prepared statement. This restriction also applies to stored procedure and function parameters.
A local variable should not have the same name as a table column. If an SQL statement, such as a SELECT ... INTO statement, contains a reference to a column and a declared local variable with the same name, MySQL currently interprets the reference as the name of a variable. Consider the following procedure definition:
CREATE PROCEDURE sp1 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;

 SELECT xname, id INTO newname, xid
 FROM table1 WHERE xname = xname;
 SELECT newname;
END;
MySQL interprets xname in the SELECT statement as a reference to the xname variable rather than the xname column. Consequently, when the procedure sp1()is called, the newname variable returns the value 'bob' regardless of the value of the table1.xname column.
Similarly, the cursor definition in the following procedure contains a SELECT statement that refers to xname. MySQL interprets this as a reference to the variable of that name rather than a column reference.
CREATE PROCEDURE sp2 (x VARCHAR(5))
BEGIN
 DECLARE xname VARCHAR(5) DEFAULT 'bob';
 DECLARE newname VARCHAR(5);
 DECLARE xid INT;
 DECLARE done TINYINT DEFAULT 0;
 DECLARE cur1 CURSOR FOR SELECT xname, id FROM table1;
 DECLARE CONTINUE HANDLER FOR NOT FOUND SET done = 1;

 OPEN cur1;
 read_loop: LOOP
 FETCH FROM cur1 INTO newname, xid;
 IF done THEN LEAVE read_loop; END IF;
 SELECT newname;
 END LOOP;
 CLOSE cur1;
END;

[bookmark: _Toc57736888]Flow Control Statements
MySQL supports the IF, CASE, ITERATE, LEAVE LOOP, WHILE, and REPEAT constructs for flow control within stored programs. It also supports RETURN within stored functions.
Many of these constructs contain other statements, as indicated by the grammar specifications in the following sections. Such constructs may be nested. For example, an IF statement might contain a WHILE loop, which itself contains a CASE statement.
MySQL does not support FOR loops.
[bookmark: _Toc57736889]CASE Statement
[bookmark: idm46148690771408]CASE case_value
 WHEN when_value THEN statement_list
 [WHEN when_value THEN statement_list] ...
 [ELSE statement_list]
END CASE
Or:
CASE
 WHEN search_condition THEN statement_list
 [WHEN search_condition THEN statement_list] ...
 [ELSE statement_list]
END CASE
The CASE statement for stored programs implements a complex conditional construct.
Note
There is also a CASE operator, which differs from the CASE statement described here. The CASE statement cannot have an ELSE NULL clause, and it is terminated with END CASE instead of END.
For the first syntax, case_value is an expression. This value is compared to the when_value expression in each WHEN clause until one of them is equal. When an equal when_value is found, the corresponding THEN clause statement_list executes. If no when_value is equal, the ELSE clause statement_list executes, if there is one.
This syntax cannot be used to test for equality with NULL because NULL = NULL is false.
For the second syntax, each WHEN clause search_condition expression is evaluated until one is true, at which point its corresponding THEN clause statement_list executes. If no search_condition is equal, the ELSE clause statement_list executes, if there is one.
If no when_value or search_condition matches the value tested and the CASE statement contains no ELSE clause, a Case not found for CASE statement error results.
Each statement_list consists of one or more SQL statements; an empty statement_list is not permitted.
To handle situations where no value is matched by any WHEN clause, use an ELSE containing an empty BEGIN ... END block, as shown in this example. (The indentation used here in the ELSE clause is for purposes of clarity only, and is not otherwise significant.)
DELIMITER |

CREATE PROCEDURE p()
 BEGIN
 DECLARE v INT DEFAULT 1;

 CASE v
 WHEN 2 THEN SELECT v;
 WHEN 3 THEN SELECT 0;
 ELSE
 BEGIN
 END;
 END CASE;
 END;
[bookmark: _Toc57736890]IF Statement
[bookmark: idm46148690725520]IF search_condition THEN statement_list
 [ELSEIF search_condition THEN statement_list] ...
 [ELSE statement_list]
END IF
The IF statement for stored programs implements a basic conditional construct.
Note
There is also an IF() function, which differs from the IF statement described here. See Section 12.5, “Flow Control Functions”. The IF statement can have THEN, ELSE, and ELSEIF clauses, and it is terminated with END IF.
If a given search_condition evaluates to true, the corresponding THEN or ELSEIF clause statement_list executes. If no search_condition matches, the ELSE clause statement_list executes.
Each statement_list consists of one or more SQL statements; an empty statement_list is not permitted.
An IF ... END IF block, like all other flow-control blocks used within stored programs, must be terminated with a semicolon, as shown in this example:
DELIMITER //

CREATE FUNCTION SimpleCompare(n INT, m INT)
 RETURNS VARCHAR(20)

 BEGIN
 DECLARE s VARCHAR(20);

 IF n > m THEN SET s = '>';
 ELSEIF n = m THEN SET s = '=';
 ELSE SET s = '<';
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m);

 RETURN s;
 END //

DELIMITER ;
As with other flow-control constructs, IF ... END IF blocks may be nested within other flow-control constructs, including other IF statements. Each IF must be terminated by its own END IF followed by a semicolon. You can use indentation to make nested flow-control blocks more easily readable by humans (although this is not required by MySQL), as shown here:
DELIMITER //

CREATE FUNCTION VerboseCompare (n INT, m INT)
 RETURNS VARCHAR(50)

 BEGIN
 DECLARE s VARCHAR(50);

 IF n = m THEN SET s = 'equals';
 ELSE
 IF n > m THEN SET s = 'greater';
 ELSE SET s = 'less';
 END IF;

 SET s = CONCAT('is ', s, ' than');
 END IF;

 SET s = CONCAT(n, ' ', s, ' ', m, '.');

 RETURN s;
 END //

DELIMITER ;
In this example, the inner IF is evaluated only if n is not equal to m.
[bookmark: _Toc57736891]ITERATE Statement
[bookmark: idm46148690688288]ITERATE label
ITERATE can appear only within LOOP, REPEAT, and WHILE statements. ITERATE means “start the loop again.”
[bookmark: _Toc57736892]13.6.5.4 LEAVE Statement
[bookmark: idm46148690673536]LEAVE label
This statement is used to exit the flow control construct that has the given label. If the label is for the outermost stored program block, LEAVE exits the program.
LEAVE can be used within BEGIN ... END or loop constructs (LOOP, REPEAT, WHILE).
For an example, see Section 13.6.5.5, “LOOP Statement”.
[bookmark: _Toc57736893]LOOP Statement
[bookmark: idm46148690657328][begin_label:] LOOP
 statement_list
END LOOP [end_label]
LOOP implements a simple loop construct, enabling repeated execution of the statement list, which consists of one or more statements, each terminated by a semicolon (;) statement delimiter. The statements within the loop are repeated until the loop is terminated. Usually, this is accomplished with a LEAVE statement. Within a stored function, RETURN can also be used, which exits the function entirely.
Neglecting to include a loop-termination statement results in an infinite loop.
A LOOP statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement Labels”.
Example:
CREATE PROCEDURE doiterate(p1 INT)
BEGIN
 label1: LOOP
 SET p1 = p1 + 1;
 IF p1 < 10 THEN
 ITERATE label1;
 END IF;
 LEAVE label1;
 END LOOP label1;
 SET @x = p1;
END;
[bookmark: _Toc57736894]REPEAT Statement
[bookmark: idm46148690638720][bookmark: idm46148690637648][begin_label:] REPEAT
 statement_list
UNTIL search_condition
END REPEAT [end_label]
The statement list within a REPEAT statement is repeated until the search_condition expression is true. Thus, a REPEAT always enters the loop at least once. statement_list consists of one or more statements, each terminated by a semicolon (;) statement delimiter.
A REPEAT statement can be labeled..
Example:
mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 BEGIN
 SET @x = 0;
 REPEAT
 SET @x = @x + 1;
 UNTIL @x > p1 END REPEAT;
 END
 //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL dorepeat(1000)//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)
[bookmark: _Toc57736895]RETURN Statement
[bookmark: idm46148690612224]RETURN expr
The RETURN statement terminates execution of a stored function and returns the value expr to the function caller. There must be at least one RETURN statement in a stored function. There may be more than one if the function has multiple exit points.
This statement is not used in stored procedures, triggers, or events. The LEAVE statement can be used to exit a stored program of those types.
[bookmark: _Toc57736896] WHILE Statement
[bookmark: idm46148690600144][begin_label:] WHILE search_condition DO
 statement_list
END WHILE [end_label]
The statement list within a WHILE statement is repeated as long as the search_condition expression is true. statement_list consists of one or more SQL statements, each terminated by a semicolon (;) statement delimiter.
A WHILE statement can be labeled. For the rules regarding label use, see Section 13.6.2, “Statement Labels”.
Example:
CREATE PROCEDURE dowhile()
BEGIN
 DECLARE v1 INT DEFAULT 5;

 WHILE v1 > 0 DO
 ...
 SET v1 = v1 - 1;
 END WHILE;
END;
[bookmark: _Toc57736897]Condition Handling
Conditions may arise during stored program execution that require special handling, such as exiting the current program block or continuing execution. Handlers can be defined for general conditions such as warnings or exceptions, or for specific conditions such as a particular error code. Specific conditions can be assigned names and referred to that way in handlers.
To name a condition, use the DECLARE ... CONDITION statement. To declare a handler, use the DECLARE ... HANDLER statement
To raise a condition, use the SIGNAL statement. To modify condition information within a condition handler, use RESIGNAL.
To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement.
[bookmark: _Toc57736898]DECLARE ... CONDITION Statement
[bookmark: idm46148690485168]DECLARE condition_name CONDITION FOR condition_value

condition_value: {
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
}
The DECLARE ... CONDITION statement declares a named error condition, associating a name with a condition that needs specific handling. The name can be referred to in a subsequent DECLARE ... HANDLER statement.
Condition declarations must appear before cursor or handler declarations.
The condition_value for DECLARE ... CONDITION indicates the specific condition or class of conditions to associate with the condition name. It can take the following forms:
· mysql_error_code: An integer literal indicating a MySQL error code.
Do not use MySQL error code 0 because that indicates success rather than an error condition. For a list of MySQL error codes, see Server Error Message Reference.
· SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value.
Do not use SQLSTATE values that begin with '00' because those indicate success rather than an error condition. For a list of SQLSTATE values, see Server Error Message Reference.
Condition names referred to in SIGNAL or use RESIGNAL statements must be associated with SQLSTATE values, not MySQL error codes.
Using names for conditions can help make stored program code clearer. For example, this handler applies to attempts to drop a nonexistent table, but that is apparent only if you know that 1051 is the MySQL error code for “unknown table”:
DECLARE CONTINUE HANDLER FOR 1051
 BEGIN
 -- body of handler
 END;
By declaring a name for the condition, the purpose of the handler is more readily seen:
DECLARE no_such_table CONDITION FOR 1051;
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;
Here is a named condition for the same condition, but based on the corresponding SQLSTATE value rather than the MySQL error code:
DECLARE no_such_table CONDITION FOR SQLSTATE '42S02';
DECLARE CONTINUE HANDLER FOR no_such_table
 BEGIN
 -- body of handler
 END;
[bookmark: _Toc57736899] DECLARE ... HANDLER Statement
[bookmark: idm46148690455472]DECLARE handler_action HANDLER
 FOR condition_value [, condition_value] ...
 statement

handler_action: {
 CONTINUE
 | EXIT
 | UNDO
}

condition_value: {
 mysql_error_code
 | SQLSTATE [VALUE] sqlstate_value
 | condition_name
 | SQLWARNING
 | NOT FOUND
 | SQLEXCEPTION
}
The DECLARE ... HANDLER statement specifies a handler that deals with one or more conditions. If one of these conditions occurs, the specified statement executes. statement can be a simple statement such as SET var_name = value, or a compound statement written using BEGIN and END .
Handler declarations must appear after variable or condition declarations.
The handler_action value indicates what action the handler takes after execution of the handler statement:
· CONTINUE: Execution of the current program continues.
· EXIT: Execution terminates for the BEGIN ... END compound statement in which the handler is declared. This is true even if the condition occurs in an inner block.
· UNDO: Not supported.
The condition_value for DECLARE ... HANDLER indicates the specific condition or class of conditions that activates the handler. It can take the following forms:
· mysql_error_code: An integer literal indicating a MySQL error code, such as 1051 to specify “unknown table”:
· DECLARE CONTINUE HANDLER FOR 1051
· BEGIN
· -- body of handler
 END;
Do not use MySQL error code 0 because that indicates success rather than an error condition. For a list of MySQL error codes, see Server Error Message Reference.
· SQLSTATE [VALUE] sqlstate_value: A 5-character string literal indicating an SQLSTATE value, such as '42S01' to specify “unknown table”:
· DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
· BEGIN
· -- body of handler
 END;
Do not use SQLSTATE values that begin with '00' because those indicate success rather than an error condition. For a list of SQLSTATE values, see Server Error Message Reference.
· condition_name: A condition name previously specified with DECLARE ... CONDITION. A condition name can be associated with a MySQL error code or SQLSTATE value.
· SQLWARNING: Shorthand for the class of SQLSTATE values that begin with '01'.
· DECLARE CONTINUE HANDLER FOR SQLWARNING
· BEGIN
· -- body of handler
 END;
· NOT FOUND: Shorthand for the class of SQLSTATE values that begin with '02'. This is relevant within the context of cursors and is used to control what happens when a cursor reaches the end of a data set. If no more rows are available, a No Data condition occurs with SQLSTATE value '02000'. To detect this condition, you can set up a handler for it or for a NOT FOUND condition.
· DECLARE CONTINUE HANDLER FOR NOT FOUND
· BEGIN
· -- body of handler
 END;
 The NOT FOUND condition also occurs for SELECT ... INTO var_list statements that retrieve no rows.
· SQLEXCEPTION: Shorthand for the class of SQLSTATE values that do not begin with '00', '01', or '02'.
· DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
· BEGIN
· -- body of handler
 END;
For information about how the server chooses handlers when a condition occurs.
If a condition occurs for which no handler has been declared, the action taken depends on the condition class:
· For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the condition, as if there were an EXIT handler. If the program was called by another stored program, the calling program handles the condition using the handler selection rules applied to its own handlers.
· For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE handler.
· For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was raised by SIGNAL or RESIGNAL, the action is EXIT.
The following example uses a handler for SQLSTATE '23000', which occurs for a duplicate-key error:
mysql> CREATE TABLE test.t (s1 INT, PRIMARY KEY (s1));
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter //

mysql> CREATE PROCEDURE handlerdemo ()
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE '23000' SET @x2 = 1;
 SET @x = 1;
 INSERT INTO test.t VALUES (1);
 SET @x = 2;
 INSERT INTO test.t VALUES (1);
 SET @x = 3;
 END;
 //
Query OK, 0 rows affected (0.00 sec)

mysql> CALL handlerdemo()//
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x//
 +------+
 | @x |
 +------+
 | 3 |
 +------+
 1 row in set (0.00 sec)
Notice that @x is 3 after the procedure executes, which shows that execution continued to the end of the procedure after the error occurred. If the DECLARE ... HANDLER statement had not been present, MySQL would have taken the default action (EXIT) after the second INSERT failed due to the PRIMARY KEY constraint, and SELECT @x would have returned 2.
To ignore a condition, declare a CONTINUE handler for it and associate it with an empty block. For example:
DECLARE CONTINUE HANDLER FOR SQLWARNING BEGIN END;
The scope of a block label does not include the code for handlers declared within the block. Therefore, the statement associated with a handler cannot use ITERATE or LEAVE to refer to labels for blocks that enclose the handler declaration. Consider the following example, where the REPEAT block has a label of retry:
CREATE PROCEDURE p ()
BEGIN
 DECLARE i INT DEFAULT 3;
 retry:
 REPEAT
 BEGIN
 DECLARE CONTINUE HANDLER FOR SQLWARNING
 BEGIN
 ITERATE retry; # illegal
 END;
 IF i < 0 THEN
 LEAVE retry; # legal
 END IF;
 SET i = i - 1;
 END;
 UNTIL FALSE END REPEAT;
END;
The retry label is in scope for the IF statement within the block. It is not in scope for the CONTINUE handler, so the reference there is invalid and results in an error:
ERROR 1308 (42000): LEAVE with no matching label: retry
To avoid references to outer labels in handlers, use one of these strategies:
· To leave the block, use an EXIT handler. If no block cleanup is required, the BEGIN ... END handler body can be empty:
DECLARE EXIT HANDLER FOR SQLWARNING BEGIN END;
Otherwise, put the cleanup statements in the handler body:
DECLARE EXIT HANDLER FOR SQLWARNING
 BEGIN
 block cleanup statements
 END;
· To continue execution, set a status variable in a CONTINUE handler that can be checked in the enclosing block to determine whether the handler was invoked. The following example uses the variable done for this purpose:
· CREATE PROCEDURE p ()
· BEGIN
· DECLARE i INT DEFAULT 3;
· DECLARE done INT DEFAULT FALSE;
· retry:
· REPEAT
· BEGIN
· DECLARE CONTINUE HANDLER FOR SQLWARNING
· BEGIN
· SET done = TRUE;
· END;
· IF done OR i < 0 THEN
· LEAVE retry;
· END IF;
· SET i = i - 1;
· END;
· UNTIL FALSE END REPEAT;
END;
[bookmark: _Toc57736900]GET DIAGNOSTICS Statement
[bookmark: idm46148690342816]GET [CURRENT] DIAGNOSTICS {
 statement_information_item
 [, statement_information_item] ...
 | CONDITION condition_number
 condition_information_item
 [, condition_information_item] ...
}

statement_information_item:
 target = statement_information_item_name

condition_information_item:
 target = condition_information_item_name

statement_information_item_name: {
 NUMBER
 | ROW_COUNT
}

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | RETURNED_SQLSTATE
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}

condition_number, target:
 (see following discussion)
SQL statements produce diagnostic information that populates the diagnostics area. The GET DIAGNOSTICS statement enables applications to inspect this information. It is available as of MySQL 5.6.4. (You can also use SHOW WARNINGS or SHOW ERRORS to see conditions or errors.)
No special privileges are required to execute GET DIAGNOSTICS.
The keyword CURRENT means to retrieve information from the current diagnostics area. In MySQL, it has no effect because that is the default behavior.
GET DIAGNOSTICS is typically used in a handler within a stored program, but it is a MySQL extension that it is permitted outside handler context to check the execution of any SQL statement. For example, if you invoke the mysql client program, you can enter these statements at the prompt:
mysql> DROP TABLE test.no_such_table;
ERROR 1051 (42S02): Unknown table 'test.no_such_table'
mysql> GET DIAGNOSTICS CONDITION 1
 @p1 = RETURNED_SQLSTATE, @p2 = MESSAGE_TEXT;
mysql> SELECT @p1, @p2;
+-------+------------------------------------+
| @p1 | @p2 |
+-------+------------------------------------+
| 42S02 | Unknown table 'test.no_such_table' |
+-------+------------------------------------+
Briefly, it contains two kinds of information:
· Statement information, such as the number of conditions that occurred or the affected-rows count.
· Condition information, such as the error code and message. If a statement raises multiple conditions, this part of the diagnostics area has a condition area for each one. If a statement raises no conditions, this part of the diagnostics area is empty.
For a statement that produces three conditions, the diagnostics area contains statement and condition information like this:
Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:
 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...

GET DIAGNOSTICS can obtain either statement or condition information, but not both in the same statement:
· To obtain statement information, retrieve the desired statement items into target variables. This instance of GET DIAGNOSTICS assigns the number of available conditions and the rows-affected count to the user variables @p1 and @p2:
GET DIAGNOSTICS @p1 = NUMBER, @p2 = ROW_COUNT;
· To obtain condition information, specify the condition number and retrieve the desired condition items into target variables. This instance of GET DIAGNOSTICS assigns the SQLSTATE value and error message to the user variables @p3 and @p4:
· GET DIAGNOSTICS CONDITION 1
 @p3 = RETURNED_SQLSTATE, @p4 = MESSAGE_TEXT;
The retrieval list specifies one or more target = item_name assignments, separated by commas. Each assignment names a target variable and either a statement_information_item_name or condition_information_item_name designator, depending on whether the statement retrieves statement or condition information.
Valid target designators for storing item information can be stored procedure or function parameters, stored program local variables declared with DECLARE, or user-defined variables.
Valid condition_number designators can be stored procedure or function parameters, stored program local variables declared with DECLARE, user-defined variables, system variables, or literals. A character literal may include a _charset introducer. A warning occurs if the condition number is not in the range from 1 to the number of condition areas that have information. In this case, the warning is added to the diagnostics area without clearing it.
When a condition occurs, MySQL does not populate all condition items recognized by GET DIAGNOSTICS. For example:

mysql> GET DIAGNOSTICS CONDITION 1
 @p5 = SCHEMA_NAME, @p6 = TABLE_NAME;
mysql> SELECT @p5, @p6;
+------+------+
| @p5 | @p6 |
+------+------+
| | |
+------+------+

In standard SQL, if there are multiple conditions, the first condition relates to the SQLSTATE value returned for the previous SQL statement. In MySQL, this is not guaranteed. To get the main error, you cannot do this:
GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;
Instead, retrieve the condition count first, then use it to specify which condition number to inspect:
GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;
For information about permissible statement and condition information items, and which ones are populated when a condition occurs, see Diagnostics Area Information Items.
Here is an example that uses GET DIAGNOSTICS and an exception handler in stored procedure context to assess the outcome of an insert operation. If the insert was successful, the procedure uses GET DIAGNOSTICS to get the rows-affected count. This shows that you can use GET DIAGNOSTICS multiple times to retrieve information about a statement as long as the diagnostics area has not been cleared.
CREATE PROCEDURE do_insert(value INT)
BEGIN
 -- Declare variables to hold diagnostics area information
 DECLARE code CHAR(5) DEFAULT '00000';
 DECLARE msg TEXT;
 DECLARE nrows INT;
 DECLARE result TEXT;
 -- Declare exception handler for failed insert
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 BEGIN
 GET DIAGNOSTICS CONDITION 1
 code = RETURNED_SQLSTATE, msg = MESSAGE_TEXT;
 END;

 -- Perform the insert
 INSERT INTO t1 (int_col) VALUES(value);
 -- Check whether the insert was successful
 IF code = '00000' THEN
 GET DIAGNOSTICS nrows = ROW_COUNT;
 SET result = CONCAT('insert succeeded, row count = ',nrows);
 ELSE
 SET result = CONCAT('insert failed, error = ',code,', message = ',msg);
 END IF;
 -- Say what happened
 SELECT result;
END;
Suppose that t1.int_col is an integer column that is declared as NOT NULL. The procedure produces these results when invoked to insert non-NULL and NULL values, respectively:
mysql> CALL do_insert(1);
+---------------------------------+
| result |
+---------------------------------+
| insert succeeded, row count = 1 |
+---------------------------------+

mysql> CALL do_insert(NULL);
+---+
| result |
+---+
| insert failed, error = 23000, message = Column 'int_col' cannot be null |
+---+
Within a condition handler, GET DIAGNOSTICS should be used before other statements that might clear the diagnostics area and cause information to be lost about the condition that activated the handler.
[bookmark: _Toc57736901]RESIGNAL Statement
[bookmark: idm46148690263296]RESIGNAL [condition_value]
 [SET signal_information_item
 [, signal_information_item] ...]
condition_value: {
 SQLSTATE [VALUE] sqlstate_value
 | condition_name
}

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}
condition_name, simple_value_specification:
 (see following discussion)
RESIGNAL passes on the error condition information that is available during execution of a condition handler within a compound statement inside a stored procedure or function, trigger, or event. RESIGNAL may change some or all information before passing it on. RESIGNAL is related to SIGNAL, but instead of originating a condition as SIGNAL does, RESIGNAL relays existing condition information, possibly after modifying it.
RESIGNAL makes it possible to both handle an error and return the error information. Otherwise, by executing an SQL statement within the handler, information that caused the handler's activation is destroyed. RESIGNAL also can make some procedures shorter if a given handler can handle part of a situation, then pass the condition “up the line” to another handler.
No privileges are required to execute the RESIGNAL statement.
All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is illegal and a RESIGNAL when handler not active error occurs.
To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement.

[bookmark: resignal-overview][bookmark: _Toc57736902]RESIGNAL Overview
For condition_value and signal_information_item, the definitions and rules are the same for RESIGNAL as for SIGNAL. For example, the condition_value can be an SQLSTATE value, and the value can indicate errors, warnings, or “not found.”
The RESIGNAL statement takes condition_value and SET clauses, both of which are optional. This leads to several possible uses:
· RESIGNAL alone:
RESIGNAL;
· RESIGNAL with new signal information:
RESIGNAL SET signal_information_item [, signal_information_item] ...;
· RESIGNAL with a condition value and possibly new signal information:
· RESIGNAL condition_value
 [SET signal_information_item [, signal_information_item] ...];
These use cases all cause changes to the diagnostics and condition areas:
· A diagnostics area contains one or more condition areas.
· A condition area contains condition information items, such as the SQLSTATE value, MYSQL_ERRNO, or MESSAGE_TEXT.
The maximum number of condition areas in a diagnostics area is determined by the value of the max_error_count system variable.

A simple RESIGNAL alone means “pass on the error with no change.” It restores the last diagnostics area and makes it the current diagnostics area. That is, it “pops” the diagnostics area stack.
Within a condition handler that catches a condition, one use for RESIGNAL alone is to perform some other actions, and then pass on without change the original condition information (the information that existed before entry into the handler).
Example:
DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();

Suppose that the DROP TABLE xx statement fails. The diagnostics area stack looks like this:
DA 1. ERROR 1051 (42S02): Unknown table 'xx'
Then execution enters the EXIT handler. It starts by pushing a diagnostics area to the top of the stack, which now looks like this:
DA 1. ERROR 1051 (42S02): Unknown table 'xx'
DA 2. ERROR 1051 (42S02): Unknown table 'xx'
At this point, the contents of the first (current) and second (stacked) diagnostics areas are the same. The first diagnostics area may be modified by statements executing subsequently within the handler.
Usually a procedure statement clears the first diagnostics area. BEGIN is an exception, it does not clear, it does nothing. SET is not an exception, it clears, performs the operation, and produces a result of “success.” The diagnostics area stack now looks like this:
DA 1. ERROR 0000 (00000): Successful operation
DA 2. ERROR 1051 (42S02): Unknown table 'xx'
At this point, if @a = 0, RESIGNAL pops the diagnostics area stack, which now looks like this:
DA 1. ERROR 1051 (42S02): Unknown table 'xx'
And that is what the caller sees.
If @a is not 0, the handler simply ends, which means that there is no more use for the current diagnostics area (it has been “handled”), so it can be thrown away, causing the stacked diagnostics area to become the current diagnostics area again. The diagnostics area stack looks like this:
DA 1. ERROR 0000 (00000): Successful operation
The details make it look complex, but the end result is quite useful: Handlers can execute without destroying information about the condition that caused activation of the handler.
[bookmark: resignal-with-new-signal][bookmark: _Toc57736903]RESIGNAL with New Signal Information
RESIGNAL with a SET clause provides new signal information, so the statement means “pass on the error with changes”:
RESIGNAL SET signal_information_item [, signal_information_item] ...;
As with RESIGNAL alone, the idea is to pop the diagnostics area stack so that the original information goes out. Unlike RESIGNAL alone, anything specified in the SET clause changes.
Example:
DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SET MYSQL_ERRNO = 5; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
CALL p();
Remember from the previous discussion that RESIGNAL alone results in a diagnostics area stack like this:
DA 1. ERROR 1051 (42S02): Unknown table 'xx'
The RESIGNAL SET MYSQL_ERRNO = 5 statement results in this stack instead, which is what the caller sees:
DA 1. ERROR 5 (42S02): Unknown table 'xx'
In other words, it changes the error number, and nothing else.
The RESIGNAL statement can change any or all of the signal information items, making the first condition area of the diagnostics area look quite different.

[bookmark: resignal-with-condition][bookmark: _Toc57736904]RESIGNAL with a Condition Value and Optional New Signal Information
RESIGNAL with a condition value means “push a condition into the current diagnostics area.” If the SET clause is present, it also changes the error information.
RESIGNAL condition_value
 [SET signal_information_item [, signal_information_item] ...];
This form of RESIGNAL restores the last diagnostics area and makes it the current diagnostics area. That is, it “pops” the diagnostics area stack, which is the same as what a simple RESIGNAL alone would do. However, it also changes the diagnostics area depending on the condition value or signal information.
Example:
DROP TABLE IF EXISTS xx;
delimiter //
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SET @error_count = @error_count + 1;
 IF @a = 0 THEN RESIGNAL SQLSTATE '45000' SET MYSQL_ERRNO=5; END IF;
 END;
 DROP TABLE xx;
END//
delimiter ;
SET @error_count = 0;
SET @a = 0;
SET @@max_error_count = 2;
CALL p();
SHOW ERRORS;
This is similar to the previous example, and the effects are the same, except that if RESIGNAL happens, the current condition area looks different at the end. (The reason the condition adds to rather than replaces the existing condition is the use of a condition value.)
The RESIGNAL statement includes a condition value (SQLSTATE '45000'), so it adds a new condition area, resulting in a diagnostics area stack that looks like this:
DA 1. (condition 2) ERROR 1051 (42S02): Unknown table 'xx'
 (condition 1) ERROR 5 (45000) Unknown table 'xx'
The result of CALL p() and SHOW ERRORS for this example is:
mysql> CALL p();
ERROR 5 (45000): Unknown table 'xx'
mysql> SHOW ERRORS;
+-------+------+----------------------------------+
| Level | Code | Message |
+-------+------+----------------------------------+
| Error | 1051 | Unknown table 'xx' |
| Error | 5 | Unknown table 'xx' |
+-------+------+----------------------------------+
[bookmark: resignal-handler][bookmark: _Toc57736905]RESIGNAL Requires Condition Handler Context
All forms of RESIGNAL require that the current context be a condition handler. Otherwise, RESIGNAL is illegal and a RESIGNAL when handler not active error occurs. For example:
mysql> CREATE PROCEDURE p () RESIGNAL;
Query OK, 0 rows affected (0.00 sec)

mysql> CALL p();
ERROR 1645 (0K000): RESIGNAL when handler not active
Here is a more difficult example:
delimiter //
CREATE FUNCTION f () RETURNS INT
BEGIN
 RESIGNAL;
 RETURN 5;
END//
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION SET @a=f();
 SIGNAL SQLSTATE '55555';
END//
delimiter ;
CALL p();
RESIGNAL occurs within the stored function f(). Although f() itself is invoked within the context of the EXIT handler, execution within f() has its own context, which is not handler context. Thus, RESIGNAL within f() results in a “handler not active” error.
In MySQL 5.5, handler scope rules are less developed. f() is considered to execute within handler context and RESIGNAL within f() is legal.
[bookmark: _Toc57736906]SIGNAL Statement
[bookmark: idm46148690112336]SIGNAL condition_value
 [SET signal_information_item
 [, signal_information_item] ...]

condition_value: {
 SQLSTATE [VALUE] sqlstate_value
 | condition_name
}

signal_information_item:
 condition_information_item_name = simple_value_specification

condition_information_item_name: {
 CLASS_ORIGIN
 | SUBCLASS_ORIGIN
 | MESSAGE_TEXT
 | MYSQL_ERRNO
 | CONSTRAINT_CATALOG
 | CONSTRAINT_SCHEMA
 | CONSTRAINT_NAME
 | CATALOG_NAME
 | SCHEMA_NAME
 | TABLE_NAME
 | COLUMN_NAME
 | CURSOR_NAME
}

condition_name, simple_value_specification:
 (see following discussion)
SIGNAL is the way to “return” an error. SIGNAL provides error information to a handler, to an outer portion of the application, or to the client. Also, it provides control over the error's characteristics (error number, SQLSTATE value, message). Without SIGNAL, it is necessary to resort to workarounds such as deliberately referring to a nonexistent table to cause a routine to return an error.
No privileges are required to execute the SIGNAL statement.
To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement.
[bookmark: signal-overview][bookmark: _Toc57736907]SIGNAL Overview
The condition_value in a SIGNAL statement indicates the error value to be returned. It can be an SQLSTATE value (a 5-character string literal) or a condition_name that refers to a named condition previously defined with DECLARE ... CONDITION .
An SQLSTATE value can indicate errors, warnings, or “not found.” The first two characters of the value indicate its error class, as discussed in Signal Condition Information Items. Some signal values cause statement termination; see Effect of Signals on Handlers, Cursors, and Statements.
The SQLSTATE value for a SIGNAL statement should not start with '00' because such values indicate success and are not valid for signaling an error. This is true whether the SQLSTATE value is specified directly in the SIGNAL statement or in a named condition referred to in the statement. If the value is invalid, a Bad SQLSTATE error occurs.
To signal a generic SQLSTATE value, use '45000', which means “unhandled user-defined exception.”
The SIGNAL statement optionally includes a SET clause that contains multiple signal items, in a list of condition_information_item_name = simple_value_specification assignments, separated by commas.
Each condition_information_item_name may be specified only once in the SET clause. Otherwise, a Duplicate condition information item error occurs.
Valid simple_value_specification designators can be specified using stored procedure or function parameters, stored program local variables declared with DECLARE, user-defined variables, system variables, or literals. A character literal may include a _charset introducer.
For information about permissible condition_information_item_name values, see Signal Condition Information Items.
The following procedure signals an error or warning depending on the value of pval, its input parameter:
CREATE PROCEDURE p (pval INT)
BEGIN
 DECLARE specialty CONDITION FOR SQLSTATE '45000';
 IF pval = 0 THEN
 SIGNAL SQLSTATE '01000';
 ELSEIF pval = 1 THEN
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred';
 ELSEIF pval = 2 THEN
 SIGNAL specialty
 SET MESSAGE_TEXT = 'An error occurred';
 ELSE
 SIGNAL SQLSTATE '01000'
 SET MESSAGE_TEXT = 'A warning occurred', MYSQL_ERRNO = 1000;
 SIGNAL SQLSTATE '45000'
 SET MESSAGE_TEXT = 'An error occurred', MYSQL_ERRNO = 1001;
 END IF;
END;
If pval is 0, p() signals a warning because SQLSTATE values that begin with '01' are signals in the warning class. The warning does not terminate the procedure, and can be seen with SHOW WARNINGS after the procedure returns.
If pval is 1, p() signals an error and sets the MESSAGE_TEXT condition information item. The error terminates the procedure, and the text is returned with the error information.
If pval is 2, the same error is signaled, although the SQLSTATE value is specified using a named condition in this case.
If pval is anything else, p() first signals a warning and sets the message text and error number condition information items. This warning does not terminate the procedure, so execution continues and p() then signals an error. The error does terminate the procedure. The message text and error number set by the warning are replaced by the values set by the error, which are returned with the error information.
SIGNAL is typically used within stored programs, but it is a MySQL extension that it is permitted outside handler context. For example, if you invoke the mysql client program, you can enter any of these statements at the prompt:
SIGNAL SQLSTATE '77777';

CREATE TRIGGER t_bi BEFORE INSERT ON t
 FOR EACH ROW SIGNAL SQLSTATE '77777';

CREATE EVENT e ON SCHEDULE EVERY 1 SECOND
 DO SIGNAL SQLSTATE '77777';
SIGNAL executes according to the following rules:
If the SIGNAL statement indicates a particular SQLSTATE value, that value is used to signal the condition specified. Example:
CREATE PROCEDURE p (divisor INT)
BEGIN
 IF divisor = 0 THEN
 SIGNAL SQLSTATE '22012';
 END IF;
END;
If the SIGNAL statement uses a named condition, the condition must be declared in some scope that applies to the SIGNAL statement, and must be defined using an SQLSTATE value, not a MySQL error number. Example:
CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE divide_by_zero CONDITION FOR SQLSTATE '22012';
 IF divisor = 0 THEN
 SIGNAL divide_by_zero;
 END IF;
END;
If the named condition does not exist in the scope of the SIGNAL statement, an Undefined CONDITION error occurs.
If SIGNAL refers to a named condition that is defined with a MySQL error number rather than an SQLSTATE value, a SIGNAL/RESIGNAL can only use a CONDITION defined with SQLSTATE error occurs. The following statements cause that error because the named condition is associated with a MySQL error number:
DECLARE no_such_table CONDITION FOR 1051;
SIGNAL no_such_table;
If a condition with a given name is declared multiple times in different scopes, the declaration with the most local scope applies. Consider the following procedure:
CREATE PROCEDURE p (divisor INT)
BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '45000';
 IF divisor = 0 THEN
 BEGIN
 DECLARE my_error CONDITION FOR SQLSTATE '22012';
 SIGNAL my_error;
 END;
 END IF;
 SIGNAL my_error;
END;
If divisor is 0, the first SIGNAL statement executes. The innermost my_error condition declaration applies, raising SQLSTATE '22012'.
If divisor is not 0, the second SIGNAL statement executes. The outermost my_error condition declaration applies, raising SQLSTATE '45000'.

Signals can be raised within exception handlers:
CREATE PROCEDURE p ()
BEGIN
 DECLARE EXIT HANDLER FOR SQLEXCEPTION
 BEGIN
 SIGNAL SQLSTATE VALUE '99999'
 SET MESSAGE_TEXT = 'An error occurred';
 END;
 DROP TABLE no_such_table;
END;
CALL p() reaches the DROP TABLE statement. There is no table named no_such_table, so the error handler is activated. The error handler destroys the original error (“no such table”) and makes a new error with SQLSTATE '99999' and message An error occurred.
[bookmark: signal-condition-information-items][bookmark: _Toc57736908]Signal Condition Information Items
The following table lists the names of diagnostics area condition information items that can be set in a SIGNAL (or RESIGNAL) statement. All items are standard SQL except MYSQL_ERRNO, which is a MySQL extension.
Item Name Definition
--------- ----------
CLASS_ORIGIN VARCHAR(64)
SUBCLASS_ORIGIN VARCHAR(64)
CONSTRAINT_CATALOG VARCHAR(64)
CONSTRAINT_SCHEMA VARCHAR(64)
CONSTRAINT_NAME VARCHAR(64)
CATALOG_NAME VARCHAR(64)
SCHEMA_NAME VARCHAR(64)
TABLE_NAME VARCHAR(64)
COLUMN_NAME VARCHAR(64)
CURSOR_NAME VARCHAR(64)
MESSAGE_TEXT VARCHAR(128)
MYSQL_ERRNO SMALLINT UNSIGNED
The character set for character items is UTF-8.
It is illegal to assign NULL to a condition information item in a SIGNAL statement.
A SIGNAL statement always specifies an SQLSTATE value, either directly, or indirectly by referring to a named condition defined with an SQLSTATE value. The first two characters of an SQLSTATE value are its class, and the class determines the default value for the condition information items:
· Class = '00' (success)
Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.
· Class = '01' (warning)
· MESSAGE_TEXT = 'Unhandled user-defined warning condition';
MYSQL_ERRNO = ER_SIGNAL_WARN
· Class = '02' (not found)
· MESSAGE_TEXT = 'Unhandled user-defined not found condition';
MYSQL_ERRNO = ER_SIGNAL_NOT_FOUND
· Class > '02' (exception)
· MESSAGE_TEXT = 'Unhandled user-defined exception condition';
MYSQL_ERRNO = ER_SIGNAL_EXCEPTION
For legal classes, the other condition information items are set as follows:
CLASS_ORIGIN = SUBCLASS_ORIGIN = '';
CONSTRAINT_CATALOG = CONSTRAINT_SCHEMA = CONSTRAINT_NAME = '';
CATALOG_NAME = SCHEMA_NAME = TABLE_NAME = COLUMN_NAME = '';
CURSOR_NAME = '';
The error values that are accessible after SIGNAL executes are the SQLSTATE value raised by the SIGNAL statement and the MESSAGE_TEXT and MYSQL_ERRNO items. These values are available from the C API:
· mysql_sqlstate() returns the SQLSTATE value.
· mysql_errno() returns the MYSQL_ERRNO value.
· mysql_error() returns the MESSAGE_TEXT value.
At the SQL level, the output from SHOW WARNINGS and SHOW ERRORS indicates the MYSQL_ERRNO and MESSAGE_TEXT values in the Code and Message columns.
To retrieve information from the diagnostics area, use the GET DIAGNOSTICS statement.
[bookmark: signal-effects][bookmark: _Toc57736909]Effect of Signals on Handlers, Cursors, and Statements
Signals have different effects on statement execution depending on the signal class. The class determines how severe an error is. MySQL ignores the value of the sql_mode system variable; in particular, strict SQL mode does not matter. MySQL also ignores IGNORE: The intent of SIGNAL is to raise a user-generated error explicitly, so a signal is never ignored.
In the following descriptions, “unhandled” means that no handler for the signaled SQLSTATE value has been defined with DECLARE ... HANDLER.
· Class = '00' (success)
Illegal. SQLSTATE values that begin with '00' indicate success and are not valid for SIGNAL.
· Class = '01' (warning)
The value of the warning_count system variable goes up. SHOW WARNINGS shows the signal. SQLWARNING handlers catch the signal.
Warnings cannot be returned from stored functions because the RETURN statement that causes the function to return clears the diagnostic area. The statement thus clears any warnings that may have been present there (and resets warning_count to 0).
· Class = '02' (not found)
NOT FOUND handlers catch the signal. There is no effect on cursors. If the signal is unhandled in a stored function, statements end.
· Class > '02' (exception)
SQLEXCEPTION handlers catch the signal. If the signal is unhandled in a stored function, statements end.
· Class = '40'
Treated as an ordinary exception.
[bookmark: _Toc57736910]Scope Rules for Handlers
A stored program may include handlers to be invoked when certain conditions occur within the program. The applicability of each handler depends on its location within the program definition and on the condition or conditions that it handles:
· A handler declared in a BEGIN ... END block is in scope only for the SQL statements following the handler declarations in the block. If the handler itself raises a condition, it cannot handle that condition, nor can any other handlers declared in the block. In the following example, handlers H1 and H2 are in scope for conditions raised by statements stmt1 and stmt2. But neither H1 nor H2 are in scope for conditions raised in the body of H1 or H2.
· BEGIN -- outer block
· DECLARE EXIT HANDLER FOR ...; -- handler H1
· DECLARE EXIT HANDLER FOR ...; -- handler H2
· stmt1;
· stmt2;
END;
· A handler is in scope only for the block in which it is declared, and cannot be activated for conditions occurring outside that block. In the following example, handler H1 is in scope for stmt1 in the inner block, but not for stmt2 in the outer block:
· BEGIN -- outer block
· BEGIN -- inner block
· DECLARE EXIT HANDLER FOR ...; -- handler H1
· stmt1;
· END;
· stmt2;
END;
· A handler can be specific or general. A specific handler is for a MySQL error code, SQLSTATE value, or condition name. A general handler is for a condition in the SQLWARNING, SQLEXCEPTION, or NOT FOUND class. Condition specificity is related to condition precedence, as described later.
Multiple handlers can be declared in different scopes and with different specificities. For example, there might be a specific MySQL error code handler in an outer block, and a general SQLWARNING handler in an inner block. Or there might be handlers for a specific MySQL error code and the general SQLWARNING class in the same block.
Whether a handler is activated depends not only on its own scope and condition value, but on what other handlers are present. When a condition occurs in a stored program, the server searches for applicable handlers in the current scope (current BEGIN ... END block). If there are no applicable handlers, the search continues outward with the handlers in each successive containing scope (block). When the server finds one or more applicable handlers at a given scope, it chooses among them based on condition precedence:
· A MySQL error code handler takes precedence over an SQLSTATE value handler.
· An SQLSTATE value handler takes precedence over general SQLWARNING, SQLEXCEPTION, or NOT FOUND handlers.
· An SQLEXCEPTION handler takes precedence over an SQLWARNING handler.
· It is possible to have several applicable handlers with the same precedence. For example, a statement could generate multiple warnings with different error codes, for each of which an error-specific handler exists. In this case, the choice of which handler the server activates is nondeterministic, and may change depending on the circumstances under which the condition occurs.
One implication of the handler selection rules is that if multiple applicable handlers occur in different scopes, handlers with the most local scope take precedence over handlers in outer scopes, even over those for more specific conditions.
If there is no appropriate handler when a condition occurs, the action taken depends on the class of the condition:
· For SQLEXCEPTION conditions, the stored program terminates at the statement that raised the condition, as if there were an EXIT handler. If the program was called by another stored program, the calling program handles the condition using the handler selection rules applied to its own handlers.
· For SQLWARNING conditions, the program continues executing, as if there were a CONTINUE handler.
· For NOT FOUND conditions, if the condition was raised normally, the action is CONTINUE. If it was raised by SIGNAL or RESIGNAL, the action is EXIT.
The following examples demonstrate how MySQL applies the handler selection rules.
This procedure contains two handlers, one for the specific SQLSTATE value ('42S02') that occurs for attempts to drop a nonexistent table, and one for the general SQLEXCEPTION class:
CREATE PROCEDURE p1()
BEGIN
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t;
END;
Both handlers are declared in the same block and have the same scope. However, SQLSTATE handlers take precedence over SQLEXCEPTION handlers, so if the table t is nonexistent, the DROP TABLE statement raises a condition that activates the SQLSTATE handler:
mysql> CALL p1();
+--------------------------------+
| msg |
+--------------------------------+
| SQLSTATE handler was activated |
+--------------------------------+
This procedure contains the same two handlers. But this time, the DROP TABLE statement and SQLEXCEPTION handler are in an inner block relative to the SQLSTATE handler:
CREATE PROCEDURE p2()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;

 DROP TABLE test.t; -- occurs within inner block
 END;
END;
In this case, the handler that is more local to where the condition occurs takes precedence. The SQLEXCEPTION handler activates, even though it is more general than the SQLSTATE handler:
mysql> CALL p2();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+
In this procedure, one of the handlers is declared in a block inner to the scope of the DROP TABLE statement:
CREATE PROCEDURE p3()
BEGIN -- outer block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

 DROP TABLE test.t; -- occurs within outer block
END;
Only the SQLEXCEPTION handler applies because the other one is not in scope for the condition raised by the DROP TABLE:
mysql> CALL p3();
+------------------------------------+
| msg |
+------------------------------------+
| SQLEXCEPTION handler was activated |
+------------------------------------+
In this procedure, both handlers are declared in a block inner to the scope of the DROP TABLE statement:
CREATE PROCEDURE p4()
BEGIN -- outer block
 BEGIN -- inner block
 DECLARE CONTINUE HANDLER FOR SQLEXCEPTION
 SELECT 'SQLEXCEPTION handler was activated' AS msg;
 DECLARE CONTINUE HANDLER FOR SQLSTATE '42S02'
 SELECT 'SQLSTATE handler was activated' AS msg;
 END;

 DROP TABLE test.t; -- occurs within outer block
END;
Neither handler applies because they are not in scope for the DROP TABLE. The condition raised by the statement goes unhandled and terminates the procedure with an error:
mysql> CALL p4();
ERROR 1051 (42S02): Unknown table 'test.t'
[bookmark: _Toc57736911]The MySQL Diagnostics Area
SQL statements produce diagnostic information that populates the diagnostics area. Standard SQL has a diagnostics area stack, containing a diagnostics area for each nested execution context. Standard SQL also supports GET STACKED DIAGNOSTICS syntax for referring to the second diagnostics area during condition handler execution. MySQL does not support the STACKED keyword until MySQL 5.7. In MySQL 5.6, there is a single diagnostics area containing information from the most recent statement that wrote to it.
The following discussion describes the structure of the diagnostics area in MySQL, the information items recognized by MySQL and how statements clear and set the diagnostics area.
[bookmark: diagnostics-area-structure][bookmark: _Toc57736912]Diagnostics Area Structure
The diagnostics area contains two kinds of information:
· Statement information, such as the number of conditions that occurred or the affected-rows count.
· Condition information, such as the error code and message. If a statement raises multiple conditions, this part of the diagnostics area has a condition area for each one. If a statement raises no conditions, this part of the diagnostics area is empty.
For a statement that produces three conditions, the diagnostics area contains statement and condition information like this:
Statement information:
 row count
 ... other statement information items ...
Condition area list:
 Condition area 1:
 error code for condition 1
 error message for condition 1
 ... other condition information items ...
 Condition area 2:
 error code for condition 2:
 error message for condition 2
 ... other condition information items ...
 Condition area 3:
 error code for condition 3
 error message for condition 3
 ... other condition information items ...
[bookmark: diagnostics-area-information-items][bookmark: _Toc57736913]Diagnostics Area Information Items
The diagnostics area contains statement and condition information items. Numeric items are integers. The character set for character items is UTF-8. No item can be NULL. If a statement or condition item is not set by a statement that populates the diagnostics area, its value is 0 or the empty string, depending on the item data type.
The statement information part of the diagnostics area contains these items:
· NUMBER: An integer indicating the number of condition areas that have information.
· ROW_COUNT: An integer indicating the number of rows affected by the statement. ROW_COUNT has the same value as the ROW_COUNT() .
The condition information part of the diagnostics area contains a condition area for each condition. Condition areas are numbered from 1 to the value of the NUMBER statement condition item. If NUMBER is 0, there are no condition areas.
Each condition area contains the items in the following list. All items are standard SQL except MYSQL_ERRNO, which is a MySQL extension. The definitions apply for conditions generated other than by a signal (that is, by a SIGNAL or RESIGNAL statement). For nonsignal conditions, MySQL populates only those condition items not described as always empty. The effects of signals on the condition area are described later.
· CLASS_ORIGIN: A string containing the class of the RETURNED_SQLSTATE value. If the RETURNED_SQLSTATE value begins with a class value defined in SQL standards document ISO 9075-2 (section 24.1, SQLSTATE), CLASS_ORIGIN is 'ISO 9075'. Otherwise, CLASS_ORIGIN is 'MySQL'.
· SUBCLASS_ORIGIN: A string containing the subclass of the RETURNED_SQLSTATE value. If CLASS_ORIGIN is 'ISO 9075' or RETURNED_SQLSTATE ends with '000', SUBCLASS_ORIGIN is 'ISO 9075'. Otherwise, SUBCLASS_ORIGIN is 'MySQL'.
· RETURNED_SQLSTATE: A string that indicates the SQLSTATE value for the condition.
· MESSAGE_TEXT: A string that indicates the error message for the condition.
· MYSQL_ERRNO: An integer that indicates the MySQL error code for the condition.
· CONSTRAINT_CATALOG, CONSTRAINT_SCHEMA, CONSTRAINT_NAME: Strings that indicate the catalog, schema, and name for a violated constraint. They are always empty.
· CATALOG_NAME, SCHEMA_NAME, TABLE_NAME, COLUMN_NAME: Strings that indicate the catalog, schema, table, and column related to the condition. They are always empty.
· CURSOR_NAME: A string that indicates the cursor name. This is always empty.
For the RETURNED_SQLSTATE, MESSAGE_TEXT, and MYSQL_ERRNO values for particular errors, see Server Error Message Reference.
If a SIGNAL (or RESIGNAL) statement populates the diagnostics area, its SET clause can assign to any condition information item except RETURNED_SQLSTATE any value that is legal for the item data type. SIGNAL also sets the RETURNED_SQLSTATE value, but not directly in its SET clause. That value comes from the SIGNAL statement SQLSTATE argument.
SIGNAL also sets statement information items. It sets NUMBER to 1. It sets ROW_COUNT to −1 for errors and 0 otherwise.
[bookmark: diagnostics-area-populating][bookmark: _Toc57736914]How the Diagnostics Area is Cleared and Populated
Most nondiagnostic SQL statements populate the diagnostics area automatically, and its contents can be set explicitly with the SIGNAL and RESIGNAL statements. The diagnostics area can be examined with GET DIAGNOSTICS to extract specific items, or with SHOW WARNINGS or SHOW ERRORS to see conditions or errors.
SQL statements clear and set the diagnostics area as follows:
· When the server starts executing a statement after parsing it, it clears the diagnostics area for nondiagnostic statements that use tables. Diagnostic statements do not clear the diagnostics area. These statements are diagnostic:
· GET DIAGNOSTICS
· SHOW ERRORS
· SHOW WARNINGS
· If a statement raises a condition, the diagnostics area is cleared of conditions that belong to earlier statements. The exception is that conditions raised by GET DIAGNOSTICS and RESIGNAL are added to the diagnostics area without clearing it.
Thus, even a statement that does not normally clear the diagnostics area when it begins executing clears it if the statement raises a condition.
The following example shows the effect of various statements on the diagnostics area, using SHOW WARNINGS to display information about conditions stored there.
This DROP TABLE statement uses a table, so it clears the diagnostics area and populates it when the condition occurs:
mysql> DROP TABLE IF EXISTS test.no_such_table;
Query OK, 0 rows affected, 1 warning (0.01 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)
This SET statement does not use tables and does not generate warnings, so it leaves the diagnostics area unchanged:
mysql> SET @x = 1;
Query OK, 0 rows affected (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------------+
| Level | Code | Message |
+-------+------+------------------------------------+
| Note | 1051 | Unknown table 'test.no_such_table' |
+-------+------+------------------------------------+
1 row in set (0.00 sec)
This SET statement generates an error, so it clears and populates the diagnostics area:
mysql> SET @x = @@x;
ERROR 1193 (HY000): Unknown system variable 'x'

mysql> SHOW WARNINGS;
+-------+------+-----------------------------+
| Level | Code | Message |
+-------+------+-----------------------------+
| Error | 1193 | Unknown system variable 'x' |
+-------+------+-----------------------------+
1 row in set (0.00 sec)
The previous SET statement produced a single condition, so 1 is the only valid condition number for GET DIAGNOSTICS at this point. The following statement uses a condition number of 2, which produces a warning that is added to the diagnostics area without clearing it:
mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected, 1 warning (0.00 sec)

mysql> SHOW WARNINGS;
+-------+------+------------------------------+
| Level | Code | Message |
+-------+------+------------------------------+
| Error | 1193 | Unknown system variable 'xx' |
| Error | 1753 | Invalid condition number |
+-------+------+------------------------------+
2 rows in set (0.00 sec)
Now there are two conditions in the diagnostics area, so the same GET DIAGNOSTICS statement succeeds:
mysql> GET DIAGNOSTICS CONDITION 2 @p = MESSAGE_TEXT;
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @p;
+--------------------------+
| @p |
+--------------------------+
| Invalid condition number |
+--------------------------+
1 row in set (0.01 sec)
[bookmark: diagnostics-area-system-variables][bookmark: _Toc57736915]Diagnostics Area-Related System Variables
Certain system variables control or are related to some aspects of the diagnostics area:
· max_error_count controls the number of condition areas in the diagnostics area. If more conditions than this occur, MySQL silently discards information for the excess conditions. (Conditions added by RESIGNAL are always added, with older conditions being discarded as necessary to make room.)
· warning_count indicates the number of conditions that occurred. This includes errors, warnings, and notes. Normally, NUMBER and warning_count are the same. However, as the number of conditions generated exceeds max_error_count, the value of warning_count continues to rise whereas NUMBER remains capped at max_error_count because no additional conditions are stored in the diagnostics area.
· error_count indicates the number of errors that occurred. This value includes “not found” and exception conditions, but excludes warnings and notes. Like warning_count, its value can exceed max_error_count.
· If the sql_notes system variable is set to 0, notes are not stored and do not increment warning_count.
Example: If max_error_count is 10, the diagnostics area can contain a maximum of 10 condition areas. Suppose that a statement raises 20 conditions, 12 of which are errors. In that case, the diagnostics area contains the first 10 conditions, NUMBER is 10, warning_count is 20, and error_count is 12.
Changes to the value of max_error_count have no effect until the next attempt to modify the diagnostics area. If the diagnostics area contains 10 condition areas and max_error_count is set to 5, that has no immediate effect on the size or content of the diagnostics area.
Before MySQL 5.6, statement information items are not available directly. ROW_COUNT can be obtained by calling the ROW_COUNT() function. NUMBER is approximated by the value of the warning_count system variable. However, whereas NUMBER is capped to the value of max_error_count, warning_count is not.
[bookmark: _Toc57736916]Condition Handling and OUT or INOUT Parameters
[bookmark: idm46148689680688][bookmark: idm46148689679200][bookmark: idm46148689677712][bookmark: idm46148689676224]If a stored procedure exits with an unhandled exception, modified values of OUT and INOUT parameters are not propogated back to the caller.
If an exception is handled by a CONTINUE or EXIT handler that contains a RESIGNAL statement, execution of RESIGNAL pops the Diagnostics Area stack, thus signalling the exception (that is, the information that existed before entry into the handler). If the exception is an error, the values of OUT and INOUT parameters are not propogated back to the caller.
[bookmark: _Toc57736917] Restrictions on Condition Handling
SIGNAL, RESIGNAL, and GET DIAGNOSTICS are not permissible as prepared statements. For example, this statement is invalid:
PREPARE stmt1 FROM 'SIGNAL SQLSTATE "02000"';
SQLSTATE values in class '04' are not treated specially. They are handled the same as other exceptions.
Standard SQL has a diagnostics area stack, containing a diagnostics area for each nested execution context. Standard SQL syntax includes GET STACKED DIAGNOSTICS for referring to stacked areas. MySQL does not support the STACKED keyword because there is a single diagnostics area containing information from the most recent statement that wrote to it.
In standard SQL, the first condition relates to the SQLSTATE value returned for the previous SQL statement. In MySQL, this is not guaranteed, so to get the main error, you cannot do this:
GET DIAGNOSTICS CONDITION 1 @errno = MYSQL_ERRNO;
Instead, do this:
GET DIAGNOSTICS @cno = NUMBER;
GET DIAGNOSTICS CONDITION @cno @errno = MYSQL_ERRNO;

[bookmark: _Toc57736918]Stored Objects
[bookmark: idm46148626613536][bookmark: idm46148626612464][bookmark: idm46148626611392][bookmark: idm46148626610320][bookmark: idm46148626608832][bookmark: idm46148626607344][bookmark: idm46148626605856][bookmark: idm46148626604784][bookmark: idm46148626603712][bookmark: idm46148626602640]This chapter discusses stored database objects that are defined in terms of SQL code that is stored on the server for later execution.
Stored objects include these object types:
· Stored procedure: An object created with CREATE PROCEDURE and invoked using the CALL statement. A procedure does not have a return value but can modify its parameters for later inspection by the caller. It can also generate result sets to be returned to the client program.
· Stored function: An object created with CREATE FUNCTION and used much like a built-in function. You invoke it in an expression and it returns a value during expression evaluation.
· Trigger: An object created with CREATE TRIGGER that is associated with a table. A trigger is activated when a particular event occurs for the table, such as an insert or update.
· Event: An object created with CREATE EVENT and invoked by the server according to schedule.
· View: An object created with CREATE VIEW that when referenced produces a result set. A view acts as a virtual table.
Terminology used in this document reflects the stored object hierarchy:
· Stored routines include stored procedures and functions.
· Stored programs include stored routines, triggers, and events.
· Stored objects include stored programs and views.
This chapter describes how to use stored objects. The following sections provide additional information about SQL syntax for statements related to these objects, and about object processing:
· For each object type, there are CREATE, ALTER, and DROP statements that control which objects exist and how they are defined..
· The CALL statement is used to invoke stored procedures..
· Stored program definitions include a body that may use compound statements, loops, conditionals, and declared variables.
· Metadata changes to objects referred to by stored programs are detected and cause automatic reparsing of the affected statements when the program is next executed..
[bookmark: _Toc57736919]Defining Stored Programs
Each stored program contains a body that consists of an SQL statement. This statement may be a compound statement made up of several statements separated by semicolon (;) characters. For example, the following stored procedure has a body made up of a BEGIN ... END block that contains a SET statement and a REPEAT loop that itself contains another SET statement:
CREATE PROCEDURE dorepeat(p1 INT)
BEGIN
 SET @x = 0;
 REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
END;
If you use the mysql client program to define a stored program containing semicolon characters, a problem arises. By default, mysql itself recognizes the semicolon as a statement delimiter, so you must redefine the delimiter temporarily to cause mysql to pass the entire stored program definition to the server.
To redefine the mysql delimiter, use the delimiter command. The following example shows how to do this for the dorepeat() procedure just shown. The delimiter is changed to // to enable the entire definition to be passed to the server as a single statement, and then restored to ; before invoking the procedure. This enables the ; delimiter used in the procedure body to be passed through to the server rather than being interpreted by mysql itself.
mysql> delimiter //

mysql> CREATE PROCEDURE dorepeat(p1 INT)
 -> BEGIN
 -> SET @x = 0;
 -> REPEAT SET @x = @x + 1; UNTIL @x > p1 END REPEAT;
 -> END
 -> //
Query OK, 0 rows affected (0.00 sec)

mysql> delimiter ;

mysql> CALL dorepeat(1000);
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT @x;
+------+
| @x |
+------+
| 1001 |
+------+
1 row in set (0.00 sec)
You can redefine the delimiter to a string other than //, and the delimiter can consist of a single character or multiple characters. You should avoid the use of the backslash (\) character because that is the escape character for MySQL.
The following is an example of a function that takes a parameter, performs an operation using an SQL function, and returns the result. In this case, it is unnecessary to use delimiter because the function definition contains no internal ; statement delimiters:
mysql> CREATE FUNCTION hello (s CHAR(20))
mysql> RETURNS CHAR(50) DETERMINISTIC
 -> RETURN CONCAT('Hello, ',s,'!');
Query OK, 0 rows affected (0.00 sec)

mysql> SELECT hello('world');
+----------------+
| hello('world') |
+----------------+
| Hello, world! |
+----------------+
1 row in set (0.00 sec)
[bookmark: _Toc57736920]Using Stored Routines
[bookmark: idm46251679761168][bookmark: idm46251679760096][bookmark: idm46251679758608][bookmark: idm46251679757536][bookmark: idm46251679756048][bookmark: idm46251679754976]MySQL supports stored routines (procedures and functions). A stored routine is a set of SQL statements that can be stored in the server. Once this has been done, clients don't need to keep reissuing the individual statements but can refer to the stored routine instead.
Stored routines can be particularly useful in certain situations:
· When multiple client applications are written in different languages or work on different platforms, but need to perform the same database operations.
· When security is paramount. Banks, for example, use stored procedures and functions for all common operations. This provides a consistent and secure environment, and routines can ensure that each operation is properly logged. In such a setup, applications and users would have no access to the database tables directly, but can only execute specific stored routines.
Stored routines can provide improved performance because less information needs to be sent between the server and the client. The tradeoff is that this does increase the load on the database server because more of the work is done on the server side and less is done on the client (application) side. Consider this if many client machines (such as Web servers) are serviced by only one or a few database servers.
Stored routines also enable you to have libraries of functions in the database server. This is a feature shared by modern application languages that enable such design internally (for example, by using classes). Using these client application language features is beneficial for the programmer even outside the scope of database use.
MySQL follows the SQL:2003 syntax for stored routines, which is also used by IBM's DB2. All syntax described here is supported and any limitations and extensions are documented where appropriate.
[bookmark: idm46251679747552][bookmark: _Toc57736921]25.2.1 Stored Routine Syntax
A stored routine is either a procedure or a function. Stored routines are created with the CREATE PROCEDURE and CREATE FUNCTION statements. A procedure is invoked using a CALL statement, and can only pass back values using output variables. A function can be called from inside a statement just like any other function (that is, by invoking the function's name), and can return a scalar value. The body of a stored routine can use compound statements.
Stored routines can be dropped with the DROP PROCEDURE and DROP FUNCTION statements , and altered with the ALTER PROCEDURE and ALTER FUNCTION statements.
A stored procedure or function is associated with a particular database. This has several implications:
· When the routine is invoked, an implicit USE db_name is performed (and undone when the routine terminates). USE statements within stored routines are not permitted.
· You can qualify routine names with the database name. This can be used to refer to a routine that is not in the current database. For example, to invoke a stored procedure p or function f that is associated with the test database, you can say CALL test.p() or test.f().
· When a database is dropped, all stored routines associated with it are dropped as well.
Stored functions cannot be recursive.
Recursion in stored procedures is permitted but disabled by default. To enable recursion, set the max_sp_recursion_depth server system variable to a value greater than zero. Stored procedure recursion increases the demand on thread stack space. If you increase the value of max_sp_recursion_depth, it may be necessary to increase thread stack size by increasing the value of thread_stack at server startup..
MySQL supports a very useful extension that enables the use of regular SELECT statements (that is, without using cursors or local variables) inside a stored procedure. The result set of such a query is simply sent directly to the client. Multiple SELECT statements generate multiple result sets, so the client must use a MySQL client library that supports multiple result sets. This means the client must use a client library from a version of MySQL at least as recent as 4.1. The client should also specify the CLIENT_MULTI_RESULTS option when it connects. For C programs, this can be done with the mysql_real_connect() C API function.
In MySQL 8.0.22 and later, a user variable referenced by a statement in a stored procedure has its type determined the first time the procedure is invoked, and retains this type each time the procedure is invoked thereafter.
[bookmark: _Toc57736922]Stored Routines and MySQL Privileges
The MySQL grant system takes stored routines into account as follows:
· The CREATE ROUTINE privilege is needed to create stored routines.
· The ALTER ROUTINE privilege is needed to alter or drop stored routines. This privilege is granted automatically to the creator of a routine if necessary, and dropped from the creator when the routine is dropped.
· The EXECUTE privilege is required to execute stored routines. However, this privilege is granted automatically to the creator of a routine if necessary (and dropped from the creator when the routine is dropped). Also, the default SQL SECURITY characteristic for a routine is DEFINER, which enables users who have access to the database with which the routine is associated to execute the routine.
· If the automatic_sp_privileges system variable is 0, the EXECUTE and ALTER ROUTINE privileges are not automatically granted to and dropped from the routine creator.
· The creator of a routine is the account used to execute the CREATE statement for it. This might not be the same as the account named as the DEFINER in the routine definition.
· The account named as a routine DEFINER can see all routine properties, including its definition. The account thus has full access to the routine output as produced by:
· The contents of the INFORMATION_SCHEMA.ROUTINES table.
· The SHOW CREATE FUNCTION and SHOW CREATE PROCEDURE statements.
· The SHOW FUNCTION CODE and SHOW PROCEDURE CODE statements.
· The SHOW FUNCTION STATUS and SHOW PROCEDURE STATUS statements.
· For an account other than the account named as the routine DEFINER, access to routine properties depends on the privileges granted to the account:
· With the SHOW_ROUTINE privilege or the global SELECT privilege, the account can see all routine properties, including its definition.
· With the CREATE ROUTINE, ALTER ROUTINE or EXECUTE privilege granted at a scope that includes the routine, the account can see all routine properties except its definition.

[bookmark: _Toc57736923]25.2.4 Stored Procedures, Functions, Triggers, and LAST_INSERT_ID()
[bookmark: idm46251679639392][bookmark: idm46251679637904][bookmark: idm46251679636416][bookmark: idm46251679634928]Within the body of a stored routine (procedure or function) or a trigger, the value of LAST_INSERT_ID() changes the same way as for statements executed outside the body of these kinds of objects. The effect of a stored routine or trigger upon the value of LAST_INSERT_ID() that is seen by following statements depends on the kind of routine:
· If a stored procedure executes statements that change the value of LAST_INSERT_ID(), the changed value is seen by statements that follow the procedure call.
· For stored functions and triggers that change the value, the value is restored when the function or trigger ends, so following statments do not see a changed value.
[bookmark: _Toc57736924]Using Triggers
[bookmark: idm46251679624688]A trigger is a named database object that is associated with a table, and that activates when a particular event occurs for the table. Some uses for triggers are to perform checks of values to be inserted into a table or to perform calculations on values involved in an update.
A trigger is defined to activate when a statement inserts, updates, or deletes rows in the associated table. These row operations are trigger events. For example, rows can be inserted by INSERT or LOAD DATA statements, and an insert trigger activates for each inserted row. A trigger can be set to activate either before or after the trigger event. For example, you can have a trigger activate before each row that is inserted into a table or after each row that is updated.
Important
MySQL triggers activate only for changes made to tables by SQL statements. This includes changes to base tables that underlie updatable views. Triggers do not activate for changes to tables made by APIs that do not transmit SQL statements to the MySQL Server. This means that triggers are not activated by updates made using the NDB API.
Triggers are not activated by changes in INFORMATION_SCHEMA or performance_schema tables. Those tables are actually views and triggers are not permitted on views.
The following sections describe the syntax for creating and dropping triggers, show some examples of how to use them, and indicate how to obtain trigger metadata.
[bookmark: idm46251679614672][bookmark: _Toc57736925]Trigger Syntax and Examples
To create a trigger or drop a trigger, use the CREATE TRIGGER or DROP TRIGGER statement
Here is a simple example that associates a trigger with a table, to activate for INSERT operations. The trigger acts as an accumulator, summing the values inserted into one of the columns of the table.
mysql> CREATE TABLE account (acct_num INT, amount DECIMAL(10,2));
Query OK, 0 rows affected (0.03 sec)

mysql> CREATE TRIGGER ins_sum BEFORE INSERT ON account
 FOR EACH ROW SET @sum = @sum + NEW.amount;
Query OK, 0 rows affected (0.01 sec)
The CREATE TRIGGER statement creates a trigger named ins_sum that is associated with the account table. It also includes clauses that specify the trigger action time, the triggering event, and what to do when the trigger activates:
· The keyword BEFORE indicates the trigger action time. In this case, the trigger activates before each row inserted into the table. The other permitted keyword here is AFTER.
· The keyword INSERT indicates the trigger event; that is, the type of operation that activates the trigger. In the example, INSERT operations cause trigger activation. You can also create triggers for DELETE and UPDATE operations.
· The statement following FOR EACH ROW defines the trigger body; that is, the statement to execute each time the trigger activates, which occurs once for each row affected by the triggering event. In the example, the trigger body is a simple SET that accumulates into a user variable the values inserted into the amount column. The statement refers to the column as NEW.amount which means “the value of the amount column to be inserted into the new row.”
To use the trigger, set the accumulator variable to zero, execute an INSERT statement, and then see what value the variable has afterward:
mysql> SET @sum = 0;
mysql> INSERT INTO account VALUES(137,14.98),(141,1937.50),(97,-100.00);
mysql> SELECT @sum AS 'Total amount inserted';
+-----------------------+
| Total amount inserted |
+-----------------------+
| 1852.48 |
+-----------------------+
In this case, the value of @sum after the INSERT statement has executed is 14.98 + 1937.50 - 100, or 1852.48.
To destroy the trigger, use a DROP TRIGGER statement. You must specify the schema name if the trigger is not in the default schema:
mysql> DROP TRIGGER test.ins_sum;
If you drop a table, any triggers for the table are also dropped.
Trigger names exist in the schema namespace, meaning that all triggers must have unique names within a schema. Triggers in different schemas can have the same name.
It is possible to define multiple triggers for a given table that have the same trigger event and action time. For example, you can have two BEFORE UPDATE triggers for a table. By default, triggers that have the same trigger event and action time activate in the order they were created. To affect trigger order, specify a clause after FOR EACH ROW that indicates FOLLOWS or PRECEDES and the name of an existing trigger that also has the same trigger event and action time. With FOLLOWS, the new trigger activates after the existing trigger. With PRECEDES, the new trigger activates before the existing trigger.
For example, the following trigger definition defines another BEFORE INSERT trigger for the account table:
mysql> CREATE TRIGGER ins_transaction BEFORE INSERT ON account
 FOR EACH ROW PRECEDES ins_sum
 SET
 @deposits = @deposits + IF(NEW.amount>0,NEW.amount,0),
 @withdrawals = @withdrawals + IF(NEW.amount<0,-NEW.amount,0);
Query OK, 0 rows affected (0.01 sec)
This trigger, ins_transaction, is similar to ins_sum but accumulates deposits and withdrawals separately. It has a PRECEDES clause that causes it to activate before ins_sum; without that clause, it would activate after ins_sum because it is created after ins_sum.
Within the trigger body, the OLD and NEW keywords enable you to access columns in the rows affected by a trigger. OLD and NEW are MySQL extensions to triggers; they are not case-sensitive.
In an INSERT trigger, only NEW.col_name can be used; there is no old row. In a DELETE trigger, only OLD.col_name can be used; there is no new row. In an UPDATE trigger, you can use OLD.col_name to refer to the columns of a row before it is updated and NEW.col_name to refer to the columns of the row after it is updated.
A column named with OLD is read only. You can refer to it (if you have the SELECT privilege), but not modify it. You can refer to a column named with NEW if you have the SELECT privilege for it. In a BEFORE trigger, you can also change its value with SET NEW.col_name = value if you have the UPDATE privilege for it. This means you can use a trigger to modify the values to be inserted into a new row or used to update a row. (Such a SET statement has no effect in an AFTER trigger because the row change has already occurred.)
In a BEFORE trigger, the NEW value for an AUTO_INCREMENT column is 0, not the sequence number that is generated automatically when the new row actually is inserted.
By using the BEGIN ... END construct, you can define a trigger that executes multiple statements. Within the BEGIN block, you also can use other syntax that is permitted within stored routines such as conditionals and loops. However, just as for stored routines, if you use the mysql program to define a trigger that executes multiple statements, it is necessary to redefine the mysql statement delimiter so that you can use the ; statement delimiter within the trigger definition. The following example illustrates these points. It defines an UPDATE trigger that checks the new value to be used for updating each row, and modifies the value to be within the range from 0 to 100. This must be a BEFORE trigger because the value must be checked before it is used to update the row:
mysql> delimiter //
mysql> CREATE TRIGGER upd_check BEFORE UPDATE ON account
 FOR EACH ROW
 BEGIN
 IF NEW.amount < 0 THEN
 SET NEW.amount = 0;
 ELSEIF NEW.amount > 100 THEN
 SET NEW.amount = 100;
 END IF;
 END;//
mysql> delimiter ;
It can be easier to define a stored procedure separately and then invoke it from the trigger using a simple CALL statement. This is also advantageous if you want to execute the same code from within several triggers.
There are limitations on what can appear in statements that a trigger executes when activated:
· The trigger cannot use the CALL statement to invoke stored procedures that return data to the client or that use dynamic SQL. (Stored procedures are permitted to return data to the trigger through OUT or INOUT parameters.)
· The trigger cannot use statements that explicitly or implicitly begin or end a transaction, such as START TRANSACTION, COMMIT, or ROLLBACK. (ROLLBACK to SAVEPOINT is permitted because it does not end a transaction.).
MySQL handles errors during trigger execution as follows:
· If a BEFORE trigger fails, the operation on the corresponding row is not performed.
· A BEFORE trigger is activated by the attempt to insert or modify the row, regardless of whether the attempt subsequently succeeds.
· An AFTER trigger is executed only if any BEFORE triggers and the row operation execute successfully.
· An error during either a BEFORE or AFTER trigger results in failure of the entire statement that caused trigger invocation.
· For transactional tables, failure of a statement should cause rollback of all changes performed by the statement. Failure of a trigger causes the statement to fail, so trigger failure also causes rollback. For nontransactional tables, such rollback cannot be done, so although the statement fails, any changes performed prior to the point of the error remain in effect.
Triggers can contain direct references to tables by name, such as the trigger named testref shown in this example:
CREATE TABLE test1(a1 INT);
CREATE TABLE test2(a2 INT);
CREATE TABLE test3(a3 INT NOT NULL AUTO_INCREMENT PRIMARY KEY);
CREATE TABLE test4(
 a4 INT NOT NULL AUTO_INCREMENT PRIMARY KEY,
 b4 INT DEFAULT 0
);

delimiter |

CREATE TRIGGER testref BEFORE INSERT ON test1
 FOR EACH ROW
 BEGIN
 INSERT INTO test2 SET a2 = NEW.a1;
 DELETE FROM test3 WHERE a3 = NEW.a1;
 UPDATE test4 SET b4 = b4 + 1 WHERE a4 = NEW.a1;
 END;
|

delimiter ;

INSERT INTO test3 (a3) VALUES
 (NULL), (NULL), (NULL), (NULL), (NULL),
 (NULL), (NULL), (NULL), (NULL), (NULL);

INSERT INTO test4 (a4) VALUES
 (0), (0), (0), (0), (0), (0), (0), (0), (0), (0);
Suppose that you insert the following values into table test1 as shown here:
mysql> INSERT INTO test1 VALUES
 (1), (3), (1), (7), (1), (8), (4), (4);
Query OK, 8 rows affected (0.01 sec)
Records: 8 Duplicates: 0 Warnings: 0
As a result, the four tables contain the following data:
mysql> SELECT * FROM test1;
+------+
| a1 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test2;
+------+
| a2 |
+------+
| 1 |
| 3 |
| 1 |
| 7 |
| 1 |
| 8 |
| 4 |
| 4 |
+------+
8 rows in set (0.00 sec)

mysql> SELECT * FROM test3;
+----+
| a3 |
+----+
| 2 |
| 5 |
| 6 |
| 9 |
| 10 |
+----+
5 rows in set (0.00 sec)

mysql> SELECT * FROM test4;
+----+------+
| a4 | b4 |
+----+------+
1	3
2	0
3	1
4	2
5	0
6	0
7	1
8	1
9	0
10	0
+----+------+
10 rows in set (0.00 sec)
.
[bookmark: _Toc57736926]Using the Event Scheduler
[bookmark: idm46251679460352][bookmark: idm46251679459312]The MySQL Event Scheduler manages the scheduling and execution of events, that is, tasks that run according to a schedule.
Stored routines require the events data dictionary table in the mysql system database. This table is created during the MySQL 8.0 installation procedure. If you are upgrading to MySQL 8.0 from an earlier version, be sure to perform the upgrade procedure to make sure that your system database is up to date.
[bookmark: idm46251679446512][bookmark: _Toc57736927]Event Scheduler Overview
[bookmark: idm46251679439648]MySQL Events are tasks that run according to a schedule. Therefore, we sometimes refer to them as scheduled events. When you create an event, you are creating a named database object containing one or more SQL statements to be executed at one or more regular intervals, beginning and ending at a specific date and time. Conceptually, this is similar to the idea of the Unix crontab (also known as a “cron job”) or the Windows Task Scheduler.
Scheduled tasks of this type are also sometimes known as “temporal triggers”, implying that these are objects that are triggered by the passage of time. While this is essentially correct, we prefer to use the term events to avoid confusion with triggers of the type discussed in “Using Triggers”. Events should more specifically not be confused with “temporary triggers”. Whereas a trigger is a database object whose statements are executed in response to a specific type of event that occurs on a given table, a (scheduled) event is an object whose statements are executed in response to the passage of a specified time interval.
While there is no provision in the SQL Standard for event scheduling, there are precedents in other database systems, and you may notice some similarities between these implementations and that found in the MySQL Server.
MySQL Events have the following major features and properties:
· In MySQL, an event is uniquely identified by its name and the schema to which it is assigned.
· An event performs a specific action according to a schedule. This action consists of an SQL statement, which can be a compound statement in a BEGIN ... END block if desired . An event's timing can be either one-tie or recurrent. A one-time event executes one time only. A recurrent event repeats its action at a regular interval, and the schedule for a recurring event can be assigned a specific start day and time, end day and time, both, or neither. (By default, a recurring event's schedule begins as soon as it is created, and continues indefinitely, until it is disabled or dropped.)
If a repeating event does not terminate within its scheduling interval, the result may be multiple instances of the event executing simultaneously. If this is undesirable, you should institute a mechanism to prevent simultaneous instances. For example, you could use the GET_LOCK() function, or row or table locking.
· Users can create, modify, and drop scheduled events using SQL statements intended for these purposes. Syntactically invalid event creation and modification statements fail with an appropriate error message. A user may include statements in an event's action which require privileges that the user does not actually have. The event creation or modification statement succeeds but the event's action fails..
· Many of the properties of an event can be set or modified using SQL statements. These properties include the event's name, timing, persistence (that is, whether it is preserved following the expiration of its schedule), status (enabled or disabled), action to be performed, and the schema to which it is assigned..
The default definer of an event is the user who created the event, unless the event has been altered, in which case the definer is the user who issued the last ALTER EVENT statement affecting that event. An event can be modified by any user having the EVENT privilege on the database for which the event is defined..
· An event's action statement may include most SQL statements permitted within stored routines..
[bookmark: _Toc57736928]Event Scheduler Configuration
Events are executed by a special event scheduler thread; when we refer to the Event Scheduler, we actually refer to this thread. When running, the event scheduler thread and its current state can be seen by users having the PROCESS privilege in the output of SHOW PROCESSLIST, as shown in the discussion that follows.
[bookmark: idm46251679408752][bookmark: idm46251679407264]The global event_scheduler system variable determines whether the Event Scheduler is enabled and running on the server. It has one of these 3 values, which affect event scheduling as described here. The default is ON.
· ON: The Event Scheduler is started; the event scheduler thread runs and executes all scheduled events.
[bookmark: idm46251679401568]When the Event Scheduler is ON, the event scheduler thread is listed in the output of SHOW PROCESSLIST as a daemon process, and its state is represented as shown here:
mysql> SHOW PROCESSLIST\G
*************************** 1. row ***************************
 Id: 1
 User: root
 Host: localhost
 db: NULL
Command: Query
 Time: 0
 State: NULL
 Info: show processlist
*************************** 2. row ***************************
 Id: 2
 User: event_scheduler
 Host: localhost
 db: NULL
Command: Daemon
 Time: 3
 State: Waiting for next activation
 Info: NULL
2 rows in set (0.00 sec)
Event scheduling can be stopped by setting the value of event_scheduler to OFF.
· OFF: The Event Scheduler is stopped. The event scheduler thread does not run, is not shown in the output of SHOW PROCESSLIST, and no scheduled events are executed.
When the Event Scheduler is stopped (event_scheduler is OFF), it can be started by setting the value of event_scheduler to ON. (See next item.)
· DISABLED: This value renders the Event Scheduler nonoperational. When the Event Scheduler is DISABLED, the event scheduler thread does not run (and so does not appear in the output of SHOW PROCESSLIST). In addition, the Event Scheduler state cannot be changed at runtime.
If the Event Scheduler status has not been set to DISABLED, event_scheduler can be toggled between ON and OFF (using SET). It is also possible to use 0 for OFF, and 1 for ON when setting this variable. Thus, any of the following 4 statements can be used in the mysql client to turn on the Event Scheduler:
SET GLOBAL event_scheduler = ON;
SET @@GLOBAL.event_scheduler = ON;
SET GLOBAL event_scheduler = 1;
SET @@GLOBAL.event_scheduler = 1;
Similarly, any of these 4 statements can be used to turn off the Event Scheduler:
SET GLOBAL event_scheduler = OFF;
SET @@GLOBAL.event_scheduler = OFF;
SET GLOBAL event_scheduler = 0;
SET @@GLOBAL.event_scheduler = 0;
Although ON and OFF have numeric equivalents, the value displayed for event_scheduler by SELECT or SHOW VARIABLES is always one of OFF, ON, or DISABLED. DISABLED has no numeric equivalent. For this reason, ON and OFF are usually preferred over 1 and 0 when setting this variable.
Note that attempting to set event_scheduler without specifying it as a global variable causes an error:
mysql< SET @@event_scheduler = OFF;
ERROR 1229 (HY000): Variable 'event_scheduler' is a GLOBAL
variable and should be set with SET GLOBAL
Important
It is possible to set the Event Scheduler to DISABLED only at server startup. If event_scheduler is ON or OFF, you cannot set it to DISABLED at runtime. Also, if the Event Scheduler is set to DISABLED at startup, you cannot change the value of event_scheduler at runtime.
To disable the event scheduler, use one of the following two methods:
· As a command-line option when starting the server:
--event-scheduler=DISABLED
· In the server configuration file (my.cnf, or my.ini on Windows systems), include the line where it can be read by the server (for example, in a [mysqld] section):
event_scheduler=DISABLED
To enable the Event Scheduler, restart the server without the --event-scheduler=DISABLED command-line option, or after removing or commenting out the line containing event-scheduler=DISABLED in the server configuration file, as appropriate. Alternatively, you can use ON (or 1) or OFF (or 0) in place of the DISABLED value when starting the server.
Note
You can issue event-manipulation statements when event_scheduler is set to DISABLED. No warnings or errors are generated in such cases (provided that the statements are themselves valid). However, scheduled events cannot execute until this variable is set to ON (or 1). Once this has been done, the event scheduler thread executes all events whose scheduling conditions are satisfied.
Starting the MySQL server with the --skip-grant-tables option causes event_scheduler to be set to DISABLED, overriding any other value set either on the command line or in the my.cnf or my.ini file (Bug #26807).

[bookmark: _Toc57736929]Event Syntax
[bookmark: idm46251679317872]MySQL provides several SQL statements for working with scheduled events:
· New events are defined using the CREATE EVENT statement.
· The definition of an existing event can be changed by means of the ALTER EVENT statement..
· When a scheduled event is no longer wanted or needed, it can be deleted from the server by its definer using the DROP EVENT statement.. Whether an event persists past the end of its schedule also depends on its ON COMPLETION clause, if it has one.
An event can be dropped by any user having the EVENT privilege for the database on which the event is defined..
[bookmark: _Toc57736930]Event Metadata
[bookmark: idm46251679301984][bookmark: idm46251679300496]To obtain metadata about events:
· Query the EVENTS table of the INFORMATION_SCHEMA database..
· Use the SHOW CREATE EVENT statement..
· Use the SHOW EVENTS statement..
Event Scheduler Time Representation
[bookmark: idm46251679288112][bookmark: idm46251679286624]Each session in MySQL has a session time zone (STZ). This is the session time_zone value that is initialized from the server's global time_zone value when the session begins but may be changed during the session.
The session time zone that is current when a CREATE EVENT or ALTER EVENT statement executes is used to interpret times specified in the event definition. This becomes the event time zone (ETZ); that is, the time zone that is used for event scheduling and is in effect within the event as it executes.
For representation of event information in the data dictionary, the execute_at, starts, and ends times are converted to UTC and stored along with the event time zone. This enables event execution to proceed as defined regardless of any subsequent changes to the server time zone or daylight saving time effects. The last_executed time is also stored in UTC.
Event times can be obtained by selecting from the INFORMATION_SCHEMA.EVENTS table or from SHOW EVENTS, but they are reported as ETZ or STZ values. The following table summarizes representation of event times.
	Value
	INFORMATION_SCHEMA.EVENTS
	SHOW EVENTS

	Execute at
	ETZ
	ETZ

	Starts
	ETZ
	ETZ

	Ends
	ETZ
	ETZ

	Last executed
	ETZ
	n/a

	Created
	STZ
	n/a

	Last altered
	STZ
	n/a

[bookmark: _Toc57736931]Event Scheduler Status
[bookmark: idm46251679242064][bookmark: idm46251679240560][bookmark: idm46251679239488]The Event Scheduler writes information about event execution that terminates with an error or warning to the MySQL Server's error log..
To obtain information about the state of the Event Scheduler for debugging and troubleshooting purposes, run mysqladmin debug ; after running this command, the server's error log contains output relating to the Event Scheduler, similar to what is shown here:
Events status:
LLA = Last Locked At LUA = Last Unlocked At
WOC = Waiting On Condition DL = Data Locked

Event scheduler status:
State : INITIALIZED
Thread id : 0
LLA : n/a:0
LUA : n/a:0
WOC : NO
Workers : 0
Executed : 0
Data locked: NO

Event queue status:
Element count : 0
Data locked : NO
Attempting lock : NO
LLA : init_queue:95
LUA : init_queue:103
WOC : NO
Next activation : never
In statements that occur as part of events executed by the Event Scheduler, diagnostics messages (not only errors, but also warnings) are written to the error log, and, on Windows, to the application event log. For frequently executed events, it is possible for this to result in many logged messages. For example, for SELECT ... INTO var_list statements, if the query returns no rows, a warning with error code 1329 occurs (No data), and the variable values remain unchanged. If the query returns multiple rows, error 1172 occurs (Result consisted of more than one row).. For statements that may retrieve multiple rows, another strategy is to use LIMIT 1 to limit the result set to a single row.
[bookmark: _Toc57736932]The Event Scheduler and MySQL Privileges
[bookmark: idm46251679226576]To enable or disable the execution of scheduled events, it is necessary to set the value of the global event_scheduler system variable. This requires privileges sufficient to set global system variables..
The EVENT privilege governs the creation, modification, and deletion of events. This privilege can be bestowed using GRANT. For example, this GRANT statement confers the EVENT privilege for the schema named myschema on the user jon@ghidora:
GRANT EVENT ON myschema.* TO jon@ghidora;
(We assume that this user account already exists, and that we wish for it to remain unchanged otherwise.)
To grant this same user the EVENT privilege on all schemas, use the following statement:
GRANT EVENT ON *.* TO jon@ghidora;
The EVENT privilege has global or schema-level scope. Therefore, trying to grant it on a single table results in an error as shown:
mysql> GRANT EVENT ON myschema.mytable TO jon@ghidora;
ERROR 1144 (42000): Illegal GRANT/REVOKE command; please
consult the manual to see which privileges can be used
It is important to understand that an event is executed with the privileges of its definer, and that it cannot perform any actions for which its definer does not have the requisite privileges. For example, suppose that jon@ghidora has the EVENT privilege for myschema. Suppose also that this user has the SELECT privilege for myschema, but no other privileges for this schema. It is possible for jon@ghidora to create a new event such as this one:
CREATE EVENT e_store_ts
 ON SCHEDULE
 EVERY 10 SECOND
 DO
 INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());
The user waits for a minute or so, and then performs a SELECT * FROM mytable; query, expecting to see several new rows in the table. Instead, the table is empty. Since the user does not have the INSERT privilege for the table in question, the event has no effect.
If you inspect the MySQL error log (hostname.err), you can see that the event is executing, but the action it is attempting to perform fails:
2013-09-24T12:41:31.261992Z 25 [ERROR] Event Scheduler:
[jon@ghidora][cookbook.e_store_ts] INSERT command denied to user
'jon'@'ghidora' for table 'mytable'
2013-09-24T12:41:31.262022Z 25 [Note] Event Scheduler:
[jon@ghidora].[myschema.e_store_ts] event execution failed.
2013-09-24T12:41:41.271796Z 26 [ERROR] Event Scheduler:
[jon@ghidora][cookbook.e_store_ts] INSERT command denied to user
'jon'@'ghidora' for table 'mytable'
2013-09-24T12:41:41.272761Z 26 [Note] Event Scheduler:
[jon@ghidora].[myschema.e_store_ts] event execution failed.
Since this user very likely does not have access to the error log, it is possible to verify whether the event's action statement is valid by executing it directly:
mysql> INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP());
ERROR 1142 (42000): INSERT command denied to user
'jon'@'ghidora' for table 'mytable'
[bookmark: idm46251679192064]Inspection of the INFORMATION_SCHEMA.EVENTS table shows that e_store_ts exists and is enabled, but its LAST_EXECUTED column is NULL:
mysql> SELECT * FROM INFORMATION_SCHEMA.EVENTS
 > WHERE EVENT_NAME='e_store_ts'
 > AND EVENT_SCHEMA='myschema'\G
*************************** 1. row ***************************
 EVENT_CATALOG: NULL
 EVENT_SCHEMA: myschema
 EVENT_NAME: e_store_ts
 DEFINER: jon@ghidora
 EVENT_BODY: SQL
EVENT_DEFINITION: INSERT INTO myschema.mytable VALUES (UNIX_TIMESTAMP())
 EVENT_TYPE: RECURRING
 EXECUTE_AT: NULL
 INTERVAL_VALUE: 5
 INTERVAL_FIELD: SECOND
 SQL_MODE: NULL
 STARTS: 0000-00-00 00:00:00
 ENDS: 0000-00-00 00:00:00
 STATUS: ENABLED
 ON_COMPLETION: NOT PRESERVE
 CREATED: 2006-02-09 22:36:06
 LAST_ALTERED: 2006-02-09 22:36:06
 LAST_EXECUTED: NULL
 EVENT_COMMENT:
1 row in set (0.00 sec)
To rescind the EVENT privilege, use the REVOKE statement. In this example, the EVENT privilege on the schema myschema is removed from the jon@ghidora user account:
REVOKE EVENT ON myschema.* FROM jon@ghidora;
Important
Revoking the EVENT privilege from a user does not delete or disable any events that may have been created by that user.
An event is not migrated or dropped as a result of renaming or dropping the user who created it.
Suppose that the user jon@ghidora has been granted the EVENT and INSERT privileges on the myschema schema. This user then creates the following event:
CREATE EVENT e_insert
 ON SCHEDULE
 EVERY 7 SECOND
 DO
 INSERT INTO myschema.mytable;
After this event has been created, root revokes the EVENT privilege for jon@ghidora. However, e_insert continues to execute, inserting a new row into mytable each seven seconds. The same would be true if root had issued either of these statements:
· DROP USER jon@ghidora;
· RENAME USER jon@ghidora TO someotherguy@ghidora;
You can verify that this is true by examining the INFORMATION_SCHEMA.EVENTS table before and after issuing a DROP USER or RENAME USER statement.
Event definitions are stored in the data dictionary. To drop an event created by another user account, you must be the MySQL root user or another user with the necessary privileges.
Users' EVENT privileges are stored in the Event_priv columns of the mysql.user and mysql.db tables. In both cases, this column holds one of the values 'Y' or 'N'. 'N' is the default. mysql.user.Event_priv is set to 'Y' for a given user only if that user has the global EVENT privilege (that is, if the privilege was bestowed using GRANT EVENT ON *.*). For a schema-level EVENT privilege, GRANT creates a row in mysql.db and sets that row's Db column to the name of the schema, the User column to the name of the user, and the Event_priv column to 'Y'. There should never be any need to manipulate these tables directly, since the GRANT EVENT and REVOKE EVENT statements perform the required operations on them.
[bookmark: idm46251679135616]Five status variables provide counts of event-related operations. These are:
· Com_create_event: The number of CREATE EVENT statements executed since the last server restart.
· Com_alter_event: The number of ALTER EVENT statements executed since the last server restart.
· Com_drop_event: The number of DROP EVENT statements executed since the last server restart.
· Com_show_create_event: The number of SHOW CREATE EVENT statements executed since the last server restart.
· Com_show_events: The number of SHOW EVENTS statements executed since the last server restart.
You can view current values for all of these at one time by running the statement SHOW STATUS LIKE '%event%';.
[bookmark: _Toc57736933]Using Views
[bookmark: idm46251679115552]MySQL supports views, including updatable views. Views are stored queries that when invoked produce a result set. A view acts as a virtual table.
The following discussion describes the syntax for creating and dropping views, and shows some examples of how to use them.
[bookmark: idm46251679113392][bookmark: _Toc57736934] View Syntax
The CREATE VIEW statement creates a new view. To alter the definition of a view or drop a view, use ALTER VIEW , or DROP VIEW .
A view can be created from many kinds of SELECT statements. It can refer to base tables or other views. It can use joins, UNION, and subqueries. The SELECT need not even refer to any tables. The following example defines a view that selects two columns from another table, as well as an expression calculated from those columns:
mysql> CREATE TABLE t (qty INT, price INT);
mysql> INSERT INTO t VALUES(3, 50), (5, 60);
mysql> CREATE VIEW v AS SELECT qty, price, qty*price AS value FROM t;
mysql> SELECT * FROM v;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 3 | 50 | 150 |
| 5 | 60 | 300 |
+------+-------+-------+
mysql> SELECT * FROM v WHERE qty = 5;
+------+-------+-------+
| qty | price | value |
+------+-------+-------+
| 5 | 60 | 300 |
+------+-------+-------+
[bookmark: _Toc57736935]View Processing Algorithms
[bookmark: idm46251679089472]The optional ALGORITHM clause for CREATE VIEW or ALTER VIEW is a MySQL extension to standard SQL. It affects how MySQL processes the view. ALGORITHM takes three values: MERGE, TEMPTABLE, or UNDEFINED.
· For MERGE, the text of a statement that refers to the view and the view definition are merged such that parts of the view definition replace corresponding parts of the statement.
· For TEMPTABLE, the results from the view are retrieved into a temporary table, which then is used to execute the statement.
· For UNDEFINED, MySQL chooses which algorithm to use. It prefers MERGE over TEMPTABLE if possible, because MERGE is usually more efficient and because a view cannot be updatable if a temporary table is used.
· If no ALGORITHM clause is present, the default algorithm is determined by the value of the derived_merge flag of the optimizer_switch system variable..
A reason to specify TEMPTABLE explicitly is that locks can be released on underlying tables after the temporary table has been created and before it is used to finish processing the statement. This might result in quicker lock release than the MERGE algorithm so that other clients that use the view are not blocked as long.
A view algorithm can be UNDEFINED for three reasons:
· No ALGORITHM clause is present in the CREATE VIEW statement.
· The CREATE VIEW statement has an explicit ALGORITHM = UNDEFINED clause.
· ALGORITHM = MERGE is specified for a view that can be processed only with a temporary table. In this case, MySQL generates a warning and sets the algorithm to UNDEFINED.
As mentioned earlier, MERGE is handled by merging corresponding parts of a view definition into the statement that refers to the view. The following examples briefly illustrate how the MERGE algorithm works. The examples assume that there is a view v_merge that has this definition:
CREATE ALGORITHM = MERGE VIEW v_merge (vc1, vc2) AS
SELECT c1, c2 FROM t WHERE c3 > 100;
Example 1: Suppose that we issue this statement:
SELECT * FROM v_merge;
MySQL handles the statement as follows:
· v_merge becomes t
· * becomes vc1, vc2, which corresponds to c1, c2
· The view WHERE clause is added
The resulting statement to be executed becomes:
SELECT c1, c2 FROM t WHERE c3 > 100;
Example 2: Suppose that we issue this statement:
SELECT * FROM v_merge WHERE vc1 < 100;
This statement is handled similarly to the previous one, except that vc1 < 100 becomes c1 < 100 and the view WHERE clause is added to the statement WHERE clause using an AND connective (and parentheses are added to make sure the parts of the clause are executed with correct precedence). The resulting statement to be executed becomes:
SELECT c1, c2 FROM t WHERE (c3 > 100) AND (c1 < 100);
Effectively, the statement to be executed has a WHERE clause of this form:
WHERE (select WHERE) AND (view WHERE)
If the MERGE algorithm cannot be used, a temporary table must be used instead. Constructs that prevent merging are the same as those that prevent merging in derived tables and common table expressions. Examples are SELECT DISTINCT or LIMIT in the subquery..
[bookmark: _Toc57736936]Updatable and Insertable Views
[bookmark: idm46251679029264][bookmark: idm46251679028224][bookmark: idm46251679026736][bookmark: idm46251679025248]Some views are updatable and references to them can be used to specify tables to be updated in data change statements. That is, you can use them in statements such as UPDATE, DELETE, or INSERT to update the contents of the underlying table. Derived tables and common table expressions can also be specified in multiple-table UPDATE and DELETE statements, but can only be used for reading data to specify rows to be updated or deleted. Generally, the view references must be updatable, meaning that they may be merged and not materialized. Composite views have more complex rules.
For a view to be updatable, there must be a one-to-one relationship between the rows in the view and the rows in the underlying table. There are also certain other constructs that make a view nonupdatable. To be more specific, a view is not updatable if it contains any of the following:
· Aggregate functions or window functions (SUM(), MIN(), MAX(), COUNT(), and so forth)
· DISTINCT
· GROUP BY
· HAVING
· UNION or UNION ALL
· Subquery in the select list
Nondependent subqueries in the select list fail for INSERT, but are okay for UPDATE, DELETE. For dependent subqueries in the select list, no data change statements are permitted.
· Certain joins (see additional join discussion later in this section)
· Reference to nonupdatable view in the FROM clause
· Subquery in the WHERE clause that refers to a table in the FROM clause
· Refers only to literal values (in this case, there is no underlying table to update)
· ALGORITHM = TEMPTABLE (use of a temporary table always makes a view nonupdatable)
· Multiple references to any column of a base table (fails for INSERT, okay for UPDATE, DELETE)
[bookmark: idm46251678985296]A generated column in a view is considered updatable because it is possible to assign to it. However, if such a column is updated explicitly, the only permitted value is DEFAULT..
It is sometimes possible for a multiple-table view to be updatable, assuming that it can be processed with the MERGE algorithm. For this to work, the view must use an inner join (not an outer join or a UNION). Also, only a single table in the view definition can be updated, so the SET clause must name only columns from one of the tables in the view. Views that use UNION ALL are not permitted even though they might be theoretically updatable.
With respect to insertability (being updatable with INSERT statements), an updatable view is insertable if it also satisfies these additional requirements for the view columns:
· There must be no duplicate view column names.
· The view must contain all columns in the base table that do not have a default value.
· The view columns must be simple column references. They must not be expressions, such as these:
· 3.14159
· col1 + 3
· UPPER(col2)
· col3 / col4
(subquery)
MySQL sets a flag, called the view updatability flag, at CREATE VIEW time. The flag is set to YES (true) if UPDATE and DELETE (and similar operations) are legal for the view. Otherwise, the flag is set to NO (false). The IS_UPDATABLE column in the INFORMATION_SCHEMA.VIEWS table displays the status of this flag. It means that the server always knows whether a view is updatable.
If a view is not updatable, statements such UPDATE, DELETE, and INSERT are illegal and are rejected. (Even if a view is updatable, it might not be possible to insert into it, as described elsewhere in this section.)
The updatability of views may be affected by the value of the updatable_views_with_limit system variable. See Section 5.1.8, “Server System Variables”.
For the following discussion, suppose that these tables and views exist:
CREATE TABLE t1 (x INTEGER);
CREATE TABLE t2 (c INTEGER);
CREATE VIEW vmat AS SELECT SUM(x) AS s FROM t1;
CREATE VIEW vup AS SELECT * FROM t2;
CREATE VIEW vjoin AS SELECT * FROM vmat JOIN vup ON vmat.s=vup.c;
INSERT, UPDATE, and DELETE statements are permitted as follows:
· INSERT: The insert table of an INSERT statement may be a view reference that is merged. If the view is a join view, all components of the view must be updatable (not materialized). For a multiple-table updatable view, INSERT can work if it inserts into a single table.
This statement is invalid because one component of the join view is nonupdatable:
INSERT INTO vjoin (c) VALUES (1);
This statement is valid; the view contains no materialized components:
INSERT INTO vup (c) VALUES (1);
· UPDATE: The table or tables to be updated in an UPDATE statement may be view references that are merged. If a view is a join view, at least one component of the view must be updatable (this differs from INSERT).
In a multiple-table UPDATE statement, the updated table references of the statement must be base tables or updatable view references. Nonupdated table references may be materialized views or derived tables.
This statement is valid; column c is from the updatable part of the join view:
UPDATE vjoin SET c=c+1;
This statement is invalid; column x is from the nonupdatable part:
UPDATE vjoin SET x=x+1;
This statement is valid; the updated table reference of the multiple-table UPDATE is an updatable view (vup):
UPDATE vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...
SET c=c+1;
This statement is invalid; it tries to update a materialized derived table:
UPDATE vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...
SET s=s+1;
· DELETE: The table or tables to be deleted from in a DELETE statement must be merged views. Join views are not allowed (this differs from INSERT and UPDATE).
This statement is invalid because the view is a join view:
DELETE vjoin WHERE ...;
This statement is valid because the view is a merged (updatable) view:
DELETE vup WHERE ...;
This statement is valid because it deletes from a merged (updatable) view:
DELETE vup FROM vup JOIN (SELECT SUM(x) AS s FROM t1) AS dt ON ...;
Additional discussion and examples follow.
Earlier discussion in this section pointed out that a view is not insertable if not all columns are simple column references (for example, if it contains columns that are expressions or composite expressions). Although such a view is not insertable, it can be updatable if you update only columns that are not expressions. Consider this view:
CREATE VIEW v AS SELECT col1, 1 AS col2 FROM t;
This view is not insertable because col2 is an expression. But it is updatable if the update does not try to update col2. This update is permissible:
UPDATE v SET col1 = 0;
This update is not permissible because it attempts to update an expression column:
UPDATE v SET col2 = 0;
If a table contains an AUTO_INCREMENT column, inserting into an insertable view on the table that does not include the AUTO_INCREMENT column does not change the value of LAST_INSERT_ID(), because the side effects of inserting default values into columns not part of the view should not be visible.
[bookmark: _Toc57736937]The View WITH CHECK OPTION Clause
The WITH CHECK OPTION clause can be given for an updatable view to prevent inserts to rows for which the WHERE clause in the select_statement is not true. It also prevents updates to rows for which the WHERE clause is true but the update would cause it to be not true (in other words, it prevents visible rows from being updated to nonvisible rows).
In a WITH CHECK OPTION clause for an updatable view, the LOCAL and CASCADED keywords determine the scope of check testing when the view is defined in terms of another view. When neither keyword is given, the default is CASCADED.
WITH CHECK OPTION testing is standard-compliant:
· With LOCAL, the view WHERE clause is checked, then checking recurses to underlying views and applies the same rules.
· With CASCADED, the view WHERE clause is checked, then checking recurses to underlying views, adds WITH CASCADED CHECK OPTION to them (for purposes of the check; their definitions remain unchanged), and applies the same rules.
· With no check option, the view WHERE clause is not checked, then checking recurses to underlying views, and applies the same rules.
Consider the definitions for the following table and set of views:
CREATE TABLE t1 (a INT);
CREATE VIEW v1 AS SELECT * FROM t1 WHERE a < 2
WITH CHECK OPTION;
CREATE VIEW v2 AS SELECT * FROM v1 WHERE a > 0
WITH LOCAL CHECK OPTION;
CREATE VIEW v3 AS SELECT * FROM v1 WHERE a > 0
WITH CASCADED CHECK OPTION;
Here the v2 and v3 views are defined in terms of another view, v1.
Inserts for v2 are checked against its LOCAL check option, then the check recurses to v1 and the rules are applied again. The rules for v1 cause a check failure. The check for v3 also fails:
mysql> INSERT INTO v2 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v2'
mysql> INSERT INTO v3 VALUES (2);
ERROR 1369 (HY000): CHECK OPTION failed 'test.v3'

[bookmark: _Toc57736938]Stored Object Access Control
[bookmark: idm46251678866720][bookmark: idm46251678865264][bookmark: idm46251678864176][bookmark: idm46251678862688][bookmark: idm46251678861200][bookmark: idm46251678859712][bookmark: idm46251678858640][bookmark: idm46251678857152]Stored programs (procedures, functions, triggers, and events) and views are defined prior to use and, when referenced, execute within a security context that determines their privileges. The privileges applicable to execution of a stored object are controlled by its DEFINER attribute and SQL SECURITY characteristic.
[bookmark: stored-objects-security-definer][bookmark: _Toc57736939]The DEFINER Attribute
A stored object definition can include a DEFINER attribute that names a MySQL account. If a definition omits the DEFINER attribute, the default object definer is the user who creates it.
The following rules determine which accounts you can specify as the DEFINER attribute for a stored object:
· If you have the SET_USER_ID privilege (or the deprecated SUPER privilege), you can specify any account as the DEFINER attribute. If the account does not exist, a warning is generated. Additionally, to set a stored object DEFINER attribute to an account that has the SYSTEM_USER privilege, you must have the SYSTEM_USER privilege.
· Otherwise, the only permitted account is your own, specified either literally or as CURRENT_USER or CURRENT_USER(). You cannot set the definer to any other account.
Creating a stored object with a nonexistent DEFINER account creates an orphan object, which may have negative consequences; see Orphan Stored Objects.
[bookmark: stored-objects-security-sql-security][bookmark: _Toc57736940]The SQL SECURITY Characteristic
For stored routines (procedures and functions) and views, the object definition can include an SQL SECURITY characteristic with a value of DEFINER or INVOKER to specify whether the object executes in definer or invoker context. If the definition omits the SQL SECURITY characteristic, the default is definer context.
Triggers and events have no SQL SECURITY characteristic and always execute in definer context. The server invokes these objects automatically as necessary, so there is no invoking user.
Definer and invoker security contexts differ as follows:
· A stored object that executes in definer security context executes with the privileges of the account named by its DEFINER attribute. These privileges may be entirely different from those of the invoking user. The invoker must have appropriate privileges to reference the object (for example, EXECUTE to call a stored procedure or SELECT to select from a view), but during object execution, the invoker's privileges are ignored and only the DEFINER account privileges matter. If the DEFINER account has few privileges, the object is correspondingly limited in the operations it can perform. If the DEFINER account is highly privileged (such as an administrative account), the object can perform powerful operations no matter who invokes it.
· A stored routine or view that executes in invoker security context can perform only operations for which the invoker has privileges. The DEFINER attribute has no effect on object execution.
[bookmark: stored-objects-security-examples][bookmark: _Toc57736941]Examples
Consider the following stored procedure, which is declared with SQL SECURITY DEFINER to execute in definer security context:
CREATE DEFINER = 'admin'@'localhost' PROCEDURE p1()
SQL SECURITY DEFINER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;
Any user who has the EXECUTE privilege for p1 can invoke it with a CALL statement. However, when p1 executes, it does so in definer security context and thus executes with the privileges of 'admin'@'localhost', the account named as its DEFINER attribute. This account must have the EXECUTE privilege for p1 as well as the UPDATE privilege for the table t1 referenced within the object body. Otherwise, the procedure fails.
Now consider this stored procedure, which is identical to p1 except that its SQL SECURITY characteristic is INVOKER:
CREATE DEFINER = 'admin'@'localhost' PROCEDURE p2()
SQL SECURITY INVOKER
BEGIN
 UPDATE t1 SET counter = counter + 1;
END;
Unlike p1, p2 executes in invoker security context and thus with the privileges of the invoking user regardless of the DEFINER attribute value. p2 fails if the invoker lacks the EXECUTE privilege for p2 or the UPDATE privilege for the table t1.
[bookmark: stored-objects-security-orphan-objects][bookmark: _Toc57736942]Orphan Stored Objects
[bookmark: idm46251678789424][bookmark: idm46251678787936][bookmark: idm46251678786864][bookmark: idm46251678785376]An orphan stored object is one for which its DEFINER attribute names a nonexistent account:
· An orphan stored object can be created by specifying a nonexistent DEFINER account at object-creation time.
· An existing stored object can become orphaned through execution of a DROP USER statement that drops the object DEFINER account, or a RENAME USER statement that renames the object DEFINER account.
An orphan stored object may be problematic in these ways:
· Because the DEFINER account does not exist, the object may not work as expected if it executes in definer security context:
· For a stored routine, an error occurs at routine execution time if the SQL SECURITY value is DEFINER but the definer account does not exist.
· For a trigger, it is not a good idea for trigger activation to occur until the account actually does exist. Otherwise, the behavior with respect to privilege checking is undefined.
· For an event, an error occurs at event execution time if the account does not exist.
· For a view, an error occurs when the view is referenced if the SQL SECURITY value is DEFINER but the definer account does not exist.
· The object may present a security risk if the nonexistent DEFINER account is subsequently re-created for a purpose unrelated to the object. In this case, the account “adopts” the object and, with the appropriate privileges, is able to execute it even if that is not intended.
As of MySQL 8.0.22, the server imposes additional account-management security checks designed to prevent operations that (perhaps inadvertently) cause stored objects to become orphaned or that cause adoption of stored objects that are currently orphaned:
· DROP USER fails with an error if any account to be dropped is named as the DEFINER attribute for any stored object. (That is, the statement fails if dropping an account would cause a stored object to become orphaned.)
· RENAME USER fails with an error if any account to be renamed is named as the DEFINER attribute for any stored object. (That is, the statement fails if renaming an account would cause a stored object to become orphaned.)
· CREATE USER fails with an error if any account to be created is named as the DEFINER attribute for any stored object. (That is, the statement fails if creating an account would cause the account to adopt a currently orphaned stored object.)
In certain situations, it may be necessary to deliberately execute those account-management statements even when they would otherwise fail. To make this possible, if a user has the SET_USER_ID privilege, that privilege overrides the orphan object security checks and the statements succeed with a warning rather than failing with an error.
To obtain information about the accounts used as stored object definers in a MySQL installation, query the INFORMATION_SCHEMA.
This query identifies which INFORMATION_SCHEMA tables describe objects that have a DEFINER attribute:
mysql> SELECT TABLE_SCHEMA, TABLE_NAME FROM INFORMATION_SCHEMA.COLUMNS
 WHERE COLUMN_NAME = 'DEFINER';
+--------------------+------------+
| TABLE_SCHEMA | TABLE_NAME |
+--------------------+------------+
information_schema	EVENTS
information_schema	ROUTINES
information_schema	TRIGGERS
information_schema	VIEWS
+--------------------+------------+
The result tells you which tables to query to discover which stored object DEFINER values exist and which objects have a particular DEFINER value:
· To identify which DEFINER values exist in each table, use these queries:
· SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.EVENTS;
· SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.ROUTINES;
· SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.TRIGGERS;
SELECT DISTINCT DEFINER FROM INFORMATION_SCHEMA.VIEWS;
The query results are significant for any account displayed as follows:
· If the account exists, dropping or renaming it causes stored objects to become orphaned. If you plan to drop or rename the account, consider first dropping its associated stored objects or redefining them to have a different definer.
· If the account does not exist, creating it causes it to adopt currently orphaned stored objects. If you plan to create the account, consider whether the orphaned objects should be associated with it. If not, redefine them to have a different definer.
To redefine an object with a different definer, you can use ALTER EVENT or ALTER VIEW to directly modify the DEFINER account of events and views. For stored procedures and functions and for triggers, you must drop the object and re-create it to assign a different DEFINER account
· To identify which objects have a given DEFINER account, use these queries, substituting the account of interest for user_name@host_name:
· SELECT EVENT_SCHEMA, EVENT_NAME FROM INFORMATION_SCHEMA.EVENTS
· WHERE DEFINER = 'user_name@host_name';
· SELECT ROUTINE_SCHEMA, ROUTINE_NAME, ROUTINE_TYPE
· FROM INFORMATION_SCHEMA.ROUTINES
· WHERE DEFINER = 'user_name@host_name';
· SELECT TRIGGER_SCHEMA, TRIGGER_NAME FROM INFORMATION_SCHEMA.TRIGGERS
· WHERE DEFINER = 'user_name@host_name';
· SELECT TABLE_SCHEMA, TABLE_NAME FROM INFORMATION_SCHEMA.VIEWS
WHERE DEFINER = 'user_name@host_name';
For the ROUTINES table, the query includes the ROUTINE_TYPE column so that output rows distinguish whether the DEFINER is for a stored procedure or stored function.
If the account you are searching for does not exist, any objects displayed by those queries are orphan objects.
[bookmark: stored-objects-security-guidelines][bookmark: _Toc57736943]Risk-Minimization Guidelines
To minimize the risk potential for stored object creation and use, follow these guidelines:
· Do not create orphan stored objects; that is, objects for which the DEFINER attribute names a nonexistent account. Do not cause stored objects to become orphaned by dropping or renaming an account named by the DEFINER attribute of any existing object.
· For a stored routine or view, use SQL SECURITY INVOKER in the object definition when possible so that it can be used only by users with permissions appropriate for the operations performed by the object.
· If you create definer-context stored objects while using an account that has the SET_USER_ID privilege (or the deprecated SUPER privilege), specify an explicit DEFINER attribute that names an account possessing only the privileges required for the operations performed by the object. Specify a highly privileged DEFINER account only when absolutely necessary.
· Administrators can prevent users from creating stored objects that specify highly privileged DEFINER accounts by not granting them the SET_USER_ID privilege (or the deprecated SUPER privilege).
· Definer-context objects should be written keeping in mind that they may be able to access data for which the invoking user has no privileges. In some cases, you can prevent references to these objects by not granting unauthorized users particular privileges:
· A stored routine cannot be referenced by a user who does not have the EXECUTE privilege for it.
· A view cannot be referenced by a user who does not have the appropriate privilege for it (SELECT to select from it, INSERT to insert into it, and so forth).
However, no such control exists for triggers and events because they always execute in definer context. The server invokes these objects automatically as necessary, and users do not reference them directly:
· A trigger is activated by access to the table with which it is associated, even ordinary table accesses by users with no special privileges.
· An event is executed by the server on a scheduled basis.
In both cases, if the DEFINER account is highly privileged, the object may be able to perform sensitive or dangerous operations. This remains true if the privileges needed to create the object are revoked from the account of the user who created it. Administrators should be especially careful about granting users object-creation privileges.
[bookmark: _Toc57736944]Stored Program Binary Logging
The binary log contains information about SQL statements that modify database contents. This information is stored in the form of “events” that describe the modifications. (Binary log events differ from scheduled event stored objects.) The binary log has two important purposes:
· For replication, the binary log is used on source replication servers as a record of the statements to be sent to replica servers. The source sends the events contained in its binary log to its replicas, which execute those events to make the same data changes that were made on the source. See Section 17.2, “Replication Implementation”.
· Certain data recovery operations require use of the binary log. After a backup file has been restored, the events in the binary log that were recorded after the backup was made are re-executed. These events bring databases up to date from the point of the backup. See Section 7.3.2, “Using Backups for Recovery”.
However, if logging occurs at the statement level, there are certain binary logging issues with respect to stored programs (stored procedures and functions, triggers, and events):
· In some cases, a statement might affect different sets of rows on source and replica.
· Replicated statements executed on a replica are processed by the replica SQL thread, which has full privileges. It is possible for a procedure to follow different execution paths on source and replica servers, so a user can write a routine containing a dangerous statement that executes only on the replica where it is processed by a thread that has full privileges.
· If a stored program that modifies data is nondeterministic, it is not repeatable. This can result in different data on source and replica, or cause restored data to differ from the original data.
This section describes how MySQL handles binary logging for stored programs. It states the current conditions that the implementation places on the use of stored programs, and what you can do to avoid logging problems. It also provides additional information about the reasons for these conditions.
In general, the issues described here result when binary logging occurs at the SQL statement level (statement-based binary logging). If you use row-based binary logging, the log contains changes made to individual rows as a result of executing SQL statements. When routines or triggers execute, row changes are logged, not the statements that make the changes. For stored procedures, this means that the CALL statement is not logged. For stored functions, row changes made within the function are logged, not the function invocation. For triggers, row changes made by the trigger are logged. On the replica side, only the row changes are seen, not the stored program invocation.
Mixed format binary logging (binlog_format=MIXED) uses statement-based binary logging, except for cases where only row-based binary logging is guaranteed to lead to proper results. With mixed format, when a stored function, stored procedure, trigger, event, or prepared statement contains anything that is not safe for statement-based binary logging, the entire statement is marked as unsafe and logged in row format. The statements used to create and drop procedures, functions, triggers, and events are always safe, and are logged in statement format..
Unless noted otherwise, the remarks here assume that binary logging is enabled on the server If the binary log is not enabled, replication is not possible, nor is the binary log available for data recovery.
The conditions on the use of stored functions in MySQL can be summarized as follows. These conditions do not apply to stored procedures or Event Scheduler events and they do not apply unless binary logging is enabled.
· To create or alter a stored function, you must have the SET_USER_ID privilege (or the deprecated SUPER privilege), in addition to the CREATE ROUTINE or ALTER ROUTINE privilege that is normally required. (Depending on the DEFINER value in the function definition, SET_USER_ID or SUPER might be required regardless of whether binary logging is enabled.
· When you create a stored function, you must declare either that it is deterministic or that it does not modify data. Otherwise, it may be unsafe for data recovery or replication.
By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:
ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)
This function is deterministic (and does not modify data), so it is safe:
CREATE FUNCTION f1(i INT)
RETURNS INT
DETERMINISTIC
READS SQL DATA
BEGIN
 RETURN i;
END;
This function uses UUID(), which is not deterministic, so the function also is not deterministic and is not safe:
CREATE FUNCTION f2()
RETURNS CHAR(36) CHARACTER SET utf8
BEGIN
 RETURN UUID();
END;
This function modifies data, so it may not be safe:
CREATE FUNCTION f3(p_id INT)
RETURNS INT
BEGIN
 UPDATE t SET modtime = NOW() WHERE id = p_id;
 RETURN ROW_COUNT();
END;
Assessment of the nature of a function is based on the “honesty” of the creator. MySQL does not check that a function declared DETERMINISTIC is free of statements that produce nondeterministic results.
· When you attempt to execute a stored function, if binlog_format=STATEMENT is set, the DETERMINISTIC keyword must be specified in the function definition. If this is not the case, an error is generated and the function does not run, unless log_bin_trust_function_creators=1 is specified to override this check (see below). For recursive function calls, the DETERMINISTIC keyword is required on the outermost call only. If row-based or mixed binary logging is in use, the statement is accepted and replicated even if the function was defined without the DETERMINISTIC keyword.
· Because MySQL does not check if a function really is deterministic at creation time, the invocation of a stored function with the DETERMINISTIC keyword might carry out an action that is unsafe for statement-based logging, or invoke a function or procedure containing unsafe statements. If this occurs when binlog_format=STATEMENT is set, a warning message is issued. If row-based or mixed binary logging is in use, no warning is issued, and the statement is replicated in row-based format.
· To relax the preceding conditions on function creation (that you must have the SUPER privilege and that a function must be declared deterministic or to not modify data), set the global log_bin_trust_function_creators system variable to 1. By default, this variable has a value of 0, but you can change it like this:
mysql> SET GLOBAL log_bin_trust_function_creators = 1;
You can also set this variable at server startup.
If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is not required for function creation unless, as described previously, the DEFINER value in the function definition requires it.
· For information about built-in functions that may be unsafe for replication (and thus cause stored functions that use them to be unsafe as well), see Section 17.5.1, “Replication Features and Issues”.
Triggers are similar to stored functions, so the preceding remarks regarding functions also apply to triggers with the following exception: CREATE TRIGGER does not have an optional DETERMINISTIC characteristic, so triggers are assumed to be always deterministic. However, this assumption might be invalid in some cases. For example, the UUID() function is nondeterministic (and does not replicate). Be careful about using such functions in triggers.
Triggers can update tables, so error messages similar to those for stored functions occur with CREATE TRIGGER if you do not have the required privileges. On the replica side, the replica uses the trigger DEFINER attribute to determine which user is considered to be the creator of the trigger.
The rest of this section provides additional detail about the logging implementation and its implications. You need not read it unless you are interested in the background on the rationale for the current logging-related conditions on stored routine use. This discussion applies only for statement-based logging, and not for row-based logging, with the exception of the first item: CREATE and DROP statements are logged as statements regardless of the logging mode.
· The server writes CREATE EVENT, CREATE PROCEDURE, CREATE FUNCTION, ALTER EVENT, ALTER PROCEDURE, ALTER FUNCTION, DROP EVENT, DROP PROCEDURE, and DROP FUNCTION statements to the binary log.
· A stored function invocation is logged as a SELECT statement if the function changes data and occurs within a statement that would not otherwise be logged. This prevents nonreplication of data changes that result from use of stored functions in nonlogged statements. For example, SELECT statements are not written to the binary log, but a SELECT might invoke a stored function that makes changes. To handle this, a SELECT func_name() statement is written to the binary log when the given function makes a change. Suppose that the following statements are executed on the source server:
· CREATE FUNCTION f1(a INT) RETURNS INT
· BEGIN
· IF (a < 3) THEN
· INSERT INTO t2 VALUES (a);
· END IF;
· RETURN 0;
· END;
·
· CREATE TABLE t1 (a INT);
· INSERT INTO t1 VALUES (1),(2),(3);
·
SELECT f1(a) FROM t1;
When the SELECT statement executes, the function f1() is invoked three times. Two of those invocations insert a row, and MySQL logs a SELECT statement for each of them. That is, MySQL writes the following statements to the binary log:
SELECT f1(1);
SELECT f1(2);
The server also logs a SELECT statement for a stored function invocation when the function invokes a stored procedure that causes an error. In this case, the server writes the SELECT statement to the log along with the expected error code. On the replica, if the same error occurs, that is the expected result and replication continues. Otherwise, replication stops.
· Logging stored function invocations rather than the statements executed by a function has a security implication for replication, which arises from two factors:
· It is possible for a function to follow different execution paths on source and replica servers.
· Statements executed on a replica are processed by the replica SQL thread which has full privileges.
The implication is that although a user must have the CREATE ROUTINE privilege to create a function, the user can write a function containing a dangerous statement that executes only on the replica where it is processed by a thread that has full privileges. For example, if the source and replica servers have server ID values of 1 and 2, respectively, a user on the source server could create and invoke an unsafe function unsafe_func() as follows:
mysql> delimiter //
mysql> CREATE FUNCTION unsafe_func () RETURNS INT
 -> BEGIN
 -> IF @@server_id=2 THEN dangerous_statement; END IF;
 -> RETURN 1;
 -> END;
 -> //
mysql> delimiter ;
mysql> INSERT INTO t VALUES(unsafe_func());
The CREATE FUNCTION and INSERT statements are written to the binary log, so the replica executes them. Because the replica SQL thread has full privileges, it executes the dangerous statement. Thus, the function invocation has different effects on the source and replica and is not replication-safe.
To guard against this danger for servers that have binary logging enabled, stored function creators must have the SUPER privilege, in addition to the usual CREATE ROUTINE privilege that is required. Similarly, to use ALTER FUNCTION, you must have the SUPER privilege in addition to the ALTER ROUTINE privilege. Without the SUPER privilege, an error occurs:
ERROR 1419 (HY000): You do not have the SUPER privilege and
binary logging is enabled (you *might* want to use the less safe
log_bin_trust_function_creators variable)
If you do not want to require function creators to have the SUPER privilege (for example, if all users with the CREATE ROUTINE privilege on your system are experienced application developers), set the global log_bin_trust_function_creators system variable to 1. You can also set this variable at server startup. If binary logging is not enabled, log_bin_trust_function_creators does not apply. SUPER is not required for function creation unless, as described previously, the DEFINER value in the function definition requires it.
· If a function that performs updates is nondeterministic, it is not repeatable. This can have two undesirable effects:
· It causes a replica to differ from the source.
· Restored data does not match the original data.
To deal with these problems, MySQL enforces the following requirement: On a source server, creation and alteration of a function is refused unless you declare the function to be deterministic or to not modify data. Two sets of function characteristics apply here:
· The DETERMINISTIC and NOT DETERMINISTIC characteristics indicate whether a function always produces the same result for given inputs. The default is NOT DETERMINISTIC if neither characteristic is given. To declare that a function is deterministic, you must specify DETERMINISTIC explicitly.
· The CONTAINS SQL, NO SQL, READS SQL DATA, and MODIFIES SQL DATA characteristics provide information about whether the function reads or writes data. Either NO SQL or READS SQL DATA indicates that a function does not change data, but you must specify one of these explicitly because the default is CONTAINS SQL if no characteristic is given.
By default, for a CREATE FUNCTION statement to be accepted, at least one of DETERMINISTIC, NO SQL, or READS SQL DATA must be specified explicitly. Otherwise an error occurs:
ERROR 1418 (HY000): This function has none of DETERMINISTIC, NO SQL,
or READS SQL DATA in its declaration and binary logging is enabled
(you *might* want to use the less safe log_bin_trust_function_creators
variable)
If you set log_bin_trust_function_creators to 1, the requirement that functions be deterministic or not modify data is dropped.
· Stored procedure calls are logged at the statement level rather than at the CALL level. That is, the server does not log the CALL statement, it logs those statements within the procedure that actually execute. As a result, the same changes that occur on the source server also occur on replicas. This prevents problems that could result from a procedure having different execution paths on different machines.
In general, statements executed within a stored procedure are written to the binary log using the same rules that would apply were the statements to be executed in standalone fashion. Some special care is taken when logging procedure statements because statement execution within procedures is not quite the same as in nonprocedure context:
· [bookmark: idm46251678530720]A statement to be logged might contain references to local procedure variables. These variables do not exist outside of stored procedure context, so a statement that refers to such a variable cannot be logged literally. Instead, each reference to a local variable is replaced by this construct for logging purposes:
NAME_CONST(var_name, var_value)
var_name is the local variable name, and var_value is a constant indicating the value that the variable has at the time the statement is logged. NAME_CONST() has a value of var_value, and a “name” of var_name. Thus, if you invoke this function directly, you get a result like this:
mysql> SELECT NAME_CONST('myname', 14);
+--------+
| myname |
+--------+
| 14 |
+--------+
NAME_CONST() enables a logged standalone statement to be executed on a replica with the same effect as the original statement that was executed on the source within a stored procedure.
The use of NAME_CONST() can result in a problem for CREATE TABLE ... SELECT statements when the source column expressions refer to local variables. Converting these references to NAME_CONST() expressions can result in column names that are different on the source and replica servers, or names that are too long to be legal column identifiers. A workaround is to supply aliases for columns that refer to local variables. Consider this statement when myvar has a value of 1:
CREATE TABLE t1 SELECT myvar;
This is rewritten as follows:
CREATE TABLE t1 SELECT NAME_CONST(myvar, 1);
To ensure that the source and replica tables have the same column names, write the statement like this:
CREATE TABLE t1 SELECT myvar AS myvar;
The rewritten statement becomes:
CREATE TABLE t1 SELECT NAME_CONST(myvar, 1) AS myvar;
· A statement to be logged might contain references to user-defined variables. To handle this, MySQL writes a SET statement to the binary log to make sure that the variable exists on the replica with the same value as on the source. For example, if a statement refers to a variable @my_var, that statement is preceded in the binary log by the following statement, where value is the value of @my_var on the source:
SET @my_var = value;
· Procedure calls can occur within a committed or rolled-back transaction. Transactional context is accounted for so that the transactional aspects of procedure execution are replicated correctly. That is, the server logs those statements within the procedure that actually execute and modify data, and also logs BEGIN, COMMIT, and ROLLBACK statements as necessary. For example, if a procedure updates only transactional tables and is executed within a transaction that is rolled back, those updates are not logged. If the procedure occurs within a committed transaction, BEGIN and COMMIT statements are logged with the updates. For a procedure that executes within a rolled-back transaction, its statements are logged using the same rules that would apply if the statements were executed in standalone fashion:
· Updates to transactional tables are not logged.
· Updates to nontransactional tables are logged because rollback does not cancel them.
· Updates to a mix of transactional and nontransactional tables are logged surrounded by BEGIN and ROLLBACK so that replicas make the same changes and rollbacks as on the source.
· A stored procedure call is not written to the binary log at the statement level if the procedure is invoked from within a stored function. In that case, the only thing logged is the statement that invokes the function (if it occurs within a statement that is logged) or a DO statement (if it occurs within a statement that is not logged). For this reason, care should be exercised in the use of stored functions that invoke a procedure, even if the procedure is otherwise safe in itself.
[bookmark: _Toc57736945]Restrictions on Stored Programs
[bookmark: idm46251678484976][bookmark: idm46251678483488][bookmark: idm46251678482000][bookmark: idm46251678480512][bookmark: idm46251678479024][bookmark: idm46251678477536]Some of the restrictions noted here apply to all stored routines; that is, both to stored procedures and stored functions. There are also some restrictions specific to stored functions but not to stored procedures.
The restrictions for stored functions also apply to triggers. There are also some restrictions specific to triggers.
The restrictions for stored procedures also apply to the DO clause of Event Scheduler event definitions. There are also some restrictions specific to events.
[bookmark: stored-routine-sql-restrictions][bookmark: _Toc57736946]SQL Statements Not Permitted in Stored Routines
Stored routines cannot contain arbitrary SQL statements. The following statements are not permitted:
· The locking statements LOCK TABLES and UNLOCK TABLES.
· ALTER VIEW.
· LOAD DATA.
· SQL prepared statements (PREPARE, EXECUTE, DEALLOCATE PREPARE) can be used in stored procedures, but not stored functions or triggers. Thus, stored functions and triggers cannot use dynamic SQL (where you construct statements as strings and then execute them).
· Generally, statements not permitted in SQL prepared statements are also not permitted in stored programs. For a list of statements supported as prepared statements, see Section 13.5, “Prepared Statements”. Exceptions are SIGNAL, RESIGNAL, and GET DIAGNOSTICS, which are not permissible as prepared statements but are permitted in stored programs.
· Because local variables are in scope only during stored program execution, references to them are not permitted in prepared statements created within a stored program. Prepared statement scope is the current session, not the stored program, so the statement could be executed after the program ends, at which point the variables would no longer be in scope. For example, SELECT ... INTO local_var cannot be used as a prepared statement. This restriction also applies to stored procedure and function parameters..
· Within all stored programs (stored procedures and functions, triggers, and events), the parser treats BEGIN [WORK] as the beginning of a BEGIN ... END block. To begin a transaction in this context, use START TRANSACTION instead.
[bookmark: stored-routines-function-restrictions][bookmark: _Toc57736947]Restrictions for Stored Functions
The following additional statements or operations are not permitted within stored functions. They are permitted within stored procedures, except stored procedures that are invoked from within a stored function or trigger. For example, if you use FLUSH in a stored procedure, that stored procedure cannot be called from a stored function or trigger.
· Statements that perform explicit or implicit commit or rollback. Support for these statements is not required by the SQL standard, which states that each DBMS vendor may decide whether to permit them.
· Statements that return a result set. This includes SELECT statements that do not have an INTO var_list clause and other statements such as SHOW, EXPLAIN, and CHECK TABLE. A function can process a result set either with SELECT ... INTO var_list or by using a cursor and FETCH statements..
· FLUSH statements.
· Stored functions cannot be used recursively.
· A stored function or trigger cannot modify a table that is already being used (for reading or writing) by the statement that invoked the function or trigger.
· If you refer to a temporary table multiple times in a stored function under different aliases, a Can't reopen table: 'tbl_name' error occurs, even if the references occur in different statements within the function.
· HANDLER ... READ statements that invoke stored functions can cause replication errors and are disallowed.
[bookmark: stored-routines-trigger-restrictions][bookmark: _Toc57736948]Restrictions for Triggers
For triggers, the following additional restrictions apply:
· Triggers are not activated by foreign key actions.
· When using row-based replication, triggers on the replica are not activated by statements originating on the source. The triggers on the replica are activated when using statement-based replication.
· The RETURN statement is not permitted in triggers, which cannot return a value. To exit a trigger immediately, use the LEAVE statement.
· Triggers are not permitted on tables in the mysql database. Nor are they permitted on INFORMATION_SCHEMA or performance_schema tables. Those tables are actually views and triggers are not permitted on views.
· The trigger cache does not detect when metadata of the underlying objects has changed. If a trigger uses a table and the table has changed since the trigger was loaded into the cache, the trigger operates using the outdated metadata.
[bookmark: stored-routine-name-conflicts][bookmark: _Toc57736949]Name Conflicts within Stored Routines
The same identifier might be used for a routine parameter, a local variable, and a table column. Also, the same local variable name can be used in nested blocks. For example:
CREATE PROCEDURE p (i INT)
BEGIN
 DECLARE i INT DEFAULT 0;
 SELECT i FROM t;
 BEGIN
 DECLARE i INT DEFAULT 1;
 SELECT i FROM t;
 END;
END;
In such cases, the identifier is ambiguous and the following precedence rules apply:
· A local variable takes precedence over a routine parameter or table column.
· A routine parameter takes precedence over a table column.
· A local variable in an inner block takes precedence over a local variable in an outer block.
The behavior that variables take precedence over table columns is nonstandard.
[bookmark: stored-routines-replication-restrictions][bookmark: _Toc57736950]Replication Considerations
Use of stored routines can cause replication problems..
The --replicate-wild-do-table=db_name.tbl_name option applies to tables, views, and triggers. It does not apply to stored procedures and functions, or events. To filter statements operating on the latter objects, use one or more of the --replicate-*-db options.
[bookmark: stored-routines-debugging-restrictions][bookmark: _Toc57736951]Debugging Considerations
There are no stored routine debugging facilities.
[bookmark: stored-routines-standard-restrictions][bookmark: _Toc57736952]Unsupported Syntax from the SQL:2003 Standard
The MySQL stored routine syntax is based on the SQL:2003 standard. The following items from that standard are not currently supported:
· UNDO handlers
· FOR loops
[bookmark: stored-routines-concurrency-restrictions][bookmark: _Toc57736953]Stored Routine Concurrency Considerations
To prevent problems of interaction between sessions, when a client issues a statement, the server uses a snapshot of routines and triggers available for execution of the statement. That is, the server calculates a list of procedures, functions, and triggers that may be used during execution of the statement, loads them, and then proceeds to execute the statement. While the statement executes, it does not see changes to routines performed by other sessions.
For maximum concurrency, stored functions should minimize their side-effects; in particular, updating a table within a stored function can reduce concurrent operations on that table. A stored function acquires table locks before executing, to avoid inconsistency in the binary log due to mismatch of the order in which statements execute and when they appear in the log. When statement-based binary logging is used, statements that invoke a function are recorded rather than the statements executed within the function. Consequently, stored functions that update the same underlying tables do not execute in parallel. In contrast, stored procedures do not acquire table-level locks. All statements executed within stored procedures are written to the binary log, even for statement-based binary logging.
[bookmark: stored-routines-event-restrictions][bookmark: _Toc57736954]Event Scheduler Restrictions
The following limitations are specific to the Event Scheduler:
· Event names are handled in case-insensitive fashion. For example, you cannot have two events in the same database with the names anEvent and AnEvent.
· An event may not be created, altered, or dropped from within a stored program, if the event name is specified by means of a variable. An event also may not create, alter, or drop stored routines or triggers.
· DDL statements on events are prohibited while a LOCK TABLES statement is in effect.
· Event timings using the intervals YEAR, QUARTER, MONTH, and YEAR_MONTH are resolved in months; those using any other interval are resolved in seconds. There is no way to cause events scheduled to occur at the same second to execute in a given order. In addition—due to rounding, the nature of threaded applications, and the fact that a nonzero length of time is required to create events and to signal their execution—events may be delayed by as much as 1 or 2 seconds. However, the time shown in the INFORMATION_SCHEMA.EVENTS table's LAST_EXECUTED column is always accurate to within one second of the actual event execution time. (See also Bug #16522.)
· Each execution of the statements contained in the body of an event takes place in a new connection; thus, these statements have no effect in a given user session on the server's statement counts such as Com_select and Com_insert that are displayed by SHOW STATUS. However, such counts are updated in the global scope. (Bug #16422)
· Events do not support times later than the end of the Unix Epoch; this is approximately the beginning of the year 2038. Such dates are specifically not permitted by the Event Scheduler. (Bug #16396)
· References to stored functions, user-defined functions, and tables in the ON SCHEDULE clauses of CREATE EVENT and ALTER EVENT statements are not supported. These sorts of references are not permitted. (See Bug #22830 for more information.)
[bookmark: stored-routines-ndbcluster][bookmark: _Toc57736955]Stored routines and triggers in NDB Cluster
While stored procedures, stored functions, triggers, and scheduled events are all supported by tables using the NDB storage engine, you must keep in mind that these do not propagate automatically between MySQL Servers acting as Cluster SQL nodes. This is because stored routine and trigger definitions are stored in tables in the mysql system database using InnoDB tables, which are not copied between Cluster nodes.
Any stored routine or trigger that interacts with MySQL Cluster tables must be re-created by running the appropriate CREATE PROCEDURE, CREATE FUNCTION, or CREATE TRIGGER statements on each MySQL Server that participates in the cluster where you wish to use the stored routine or trigger. Similarly, any changes to existing stored routines or triggers must be carried out explicitly on all Cluster SQL nodes, using the appropriate ALTER or DROP statements on each MySQL Server accessing the cluster.
Warning
Do not attempt to work around the issue just described by converting any mysql database tables to use the NDB storage engine. Altering the system tables in the mysql database is not supported and is very likely to produce undesirable results.

[bookmark: _Toc57736956]Restrictions on Views
[bookmark: idm46251678331808][bookmark: idm46251678330320][bookmark: idm46251678328832][bookmark: idm46251678327344]The maximum number of tables that can be referenced in the definition of a view is 61.
View processing is not optimized:
· It is not possible to create an index on a view.
· Indexes can be used for views processed using the merge algorithm. However, a view that is processed with the temptable algorithm is unable to take advantage of indexes on its underlying tables (although indexes can be used during generation of the temporary tables).
There is a general principle that you cannot modify a table and select from the same table in a subquery.
The same principle also applies if you select from a view that selects from the table, if the view selects from the table in a subquery and the view is evaluated using the merge algorithm. Example:
CREATE VIEW v1 AS
SELECT * FROM t2 WHERE EXISTS (SELECT 1 FROM t1 WHERE t1.a = t2.a);

UPDATE t1, v2 SET t1.a = 1 WHERE t1.b = v2.b;
If the view is evaluated using a temporary table, you can select from the table in the view subquery and still modify that table in the outer query. In this case, the view is stored in a temporary table and thus you are not really selecting from the table in a subquery and modifying it at the same time. (This is another reason you might wish to force MySQL to use the temptable algorithm by specifying ALGORITHM = TEMPTABLE in the view definition.)
You can use DROP TABLE or ALTER TABLE to drop or alter a table that is used in a view definition. No warning results from the DROP or ALTER operation, even though this invalidates the view. Instead, an error occurs later, when the view is used. CHECK TABLE can be used to check for views that have been invalidated by DROP or ALTER operations.
With regard to view updatability, the overall goal for views is that if any view is theoretically updatable, it should be updatable in practice. MySQL as quickly as possible. Many theoretically updatable views can be updated now, but limitations still exist..
[bookmark: idm46251678309120][bookmark: idm46251678307632][bookmark: idm46251678306144][bookmark: idm46251678304656][bookmark: idm46251678303168][bookmark: idm46251678301680]There exists a shortcoming with the current implementation of views. If a user is granted the basic privileges necessary to create a view (the CREATE VIEW and SELECT privileges), that user cannot call SHOW CREATE VIEW on that object unless the user is also granted the SHOW VIEW privilege.
That shortcoming can lead to problems backing up a database with mysqldump, which may fail due to insufficient privileges. This problem is described in Bug #22062.
The workaround to the problem is for the administrator to manually grant the SHOW VIEW privilege to users who are granted CREATE VIEW, since MySQL doesn't grant it implicitly when views are created.
Views do not have indexes, so index hints do not apply. Use of index hints when selecting from a view is not permitted.
SHOW CREATE VIEW displays view definitions using an AS alias_name clause for each column. If a column is created from an expression, the default alias is the expression text, which can be quite long. Aliases for column names in CREATE VIEW statements are checked against the maximum column length of 64 characters (not the maximum alias length of 256 characters). As a result, views created from the output of SHOW CREATE VIEW fail if any column alias exceeds 64 characters. This can cause problems in the following circumstances for views with too-long aliases:
· View definitions fail to replicate to newer replicas that enforce the column-length restriction.
· Dump files created with mysqldump cannot be loaded into servers that enforce the column-length restriction.
A workaround for either problem is to modify each problematic view definition to use aliases that provide shorter column names. Then the view replicates properly, and can be dumped and reloaded without causing an error. To modify the definition, drop and create the view again with DROP VIEW and CREATE VIEW, or replace the definition with CREATE OR REPLACE VIEW.
For problems that occur when reloading view definitions in dump files, another workaround is to edit the dump file to modify its CREATE VIEW statements. However, this does not change the original view definitions, which may cause problems for subsequent dump operations.

